Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Investigation of Fuel Economy Prediction Technology Considering Engine Thermal Flow for Hybrid Electric Vehicle, and Application to Vehicle Development Process

2024-04-09
2024-01-2408
Powertrain development requires an efficient development process with no rework and model-based development (MBD). In addition, to performance design that achieves low CO2 emissions is also required. Furthermore, it also demands fuel economy performance considering real-world usage conditions, and in North America, the EPA (U.S. Environmental Protection Agency) 5-cycle, which evaluates performance in a combination of various environments, is applied. This evaluation mode necessitates predicting performance while considering engine heat flow. Particularly, simulation technology that considers behavior based on engine temperature for Hybrid Electric Vehicle (HEV) is necessary. Additionally, in the development trend of vehicle aerodynamic improvement, variable devices like Active Grille Shutter (AGS) are utilized to contribute to reducing CO2 emissions.
Technical Paper

Development of Active Noise Control System Optimized for Road Noise Reduction

2023-05-08
2023-01-1040
In this paper, a newly developed Active Noise Control (ANC) system is introduced, that effectively reduces road noise, which becomes a major issue with electrified vehicles, and that enhances vehicle interior sound levels matching seamless acceleration by electric drive. Conventionally, reducing road noise using ANC requires numerous sensors and speakers, as well as a processor with high computing power. Therefore, the increase in system cost and the complexity of the system are obstacles to its spread. To overcome these issues, this system is developed based on four concepts. The first is a modular system configuration with unified interface to apply to various vehicle types and grades. The second is the integration and optimal placement of noise source reference sensors to achieve both reduction in number of parts and noise reduction performance.
Journal Article

Full-Scale Validation of Modified Pedestrian Dummy

2023-04-11
2023-01-0786
Injury assessment by using a whole-body pedestrian dummy is one of the ways to investigate pedestrian safety performance of vehicles. The authors’ group has improved the biofidelity of the lower limb and the pelvis of the mid-sized male pedestrian dummy (POLAR III) by modifying those components. This study aims to evaluate the biofidelity of the whole-body response of the modified dummy in full-scale impact tests. The pelvis, the thigh and the leg of POLAR III have been modified in a past study by optimizing their compliance by means of the installation of plastic and rubber parts, which were used for the tests. The generic buck developed for the assessment of pedestrian dummy whole-body impact response and specified in SAE J3093 was used for this study. The buck representing the geometry of a small family car is comprised of six parts: lower bumper, bumper, grille, hood edge, hood and windshield.
Technical Paper

On Road Fuel Economy Impact by the Aerodynamic Specifications under the Natural Wind

2020-04-14
2020-01-0678
According to some papers, the label fuel economy and the actual fuel economy experienced by the customers may exhibit a gap. One of the reasons may stem from the aerodynamic drag variations due to the natural wind. The fuel consumption is measured through bench test under several driving modes by using the road load as input condition. The road load is measured through the coast down test under less wind ambient conditions as determined by each regulation. The present paper aims to analyze the natural wind conditions encountered by the vehicle on public roads and to operate a comparison between the fuel consumptions and the driving energy. In this paper, the driving energy is calculated by the aerodynamic drag from the natural wind specifications and driving conditions. This driving energy and the fuel consumptions show good correlation. The fuel consumption is obtained from the vehicle Engine control unit(ECU) data.
Technical Paper

Onboard Ethanol-Gasoline Separation System for Octane-on-Demand Vehicle

2020-04-14
2020-01-0350
Bioethanol is being used as an alternative fuel throughout the world based on considerations of reduction of CO2 emissions and sustainability. It is widely known that ethanol has an advantage of high anti-knock quality. In order to use the ethanol in ethanol-blended gasoline to control knocking, the research discussed in this paper sought to develop a fuel separation system that would separate ethanol-blended gasoline into a high-octane-number fuel (high-ethanol-concentration fuel) and a low-octane-number fuel (low-ethanol-concentration fuel) in the vehicle. The research developed a small fuel separation system, and employed a layout in which the system was fitted in the fuel tank based on considerations of reducing the effect on cabin space and maintaining safety in the event of a collision. The total volume of the components fitted in the fuel tank is 6.6 liters.
Technical Paper

Elucidation of the Sulfide Corrosion Mechanism in Piston Pin Bushings

2020-04-14
2020-01-1079
Recent trends to downsize engines have resulted in lighter weight and greater compactness. At the same time, however, power density has increased due to the addition of turbocharger and other such means to supplement engine power and torque, and this has increased the thermal and mechanical load. In this kind of environment, corrosion of the copper alloy bushing (piston pin bushing) that is press-fitted in the small end of the connecting rod becomes an issue. The material used in automobile bearings, of which the bushing is a typical example, is known to undergo sulfidation corrosion through reaction with an extreme-pressure additive Zinc Dialkyldithiophosphate (ZnDTP) in the lubricating oil. However, that reaction path has not been clarified. The purpose of the present research, therefore, is to clarify the reaction path of ZnDTP and copper in an actual engine environment.
Technical Paper

Development of Electrostatic Capacity Type Steering Sensor Using Conductive Leather

2020-04-14
2020-01-1209
Today’s progress in electronic technologies is advancing the process of making vehicles more intelligent, and this is making driving safer and more comfortable. In recent years, numerous vehicles equipped with high-level Advance Driving Assist System (ADAS) have been put on the market. High-level ADAS can detect impending lane deviation, and control the vehicle so that the driver does not deviate from the lane. Lane departure prevention systems are able to detect imminent departure from the road, allowing the driver to apply control to prevent lane departure. These systems possess enormous potential to reduce the number of accidents resulting from road departure, but their effectiveness is highly reliant on their level of acceptance by drivers.
Journal Article

Metal Belt CVT Seizure Monitoring System Using Wear Debris Analysis and Particle Measurement

2020-04-14
2020-01-0907
An apparatus that automatically samples lubricating oil and measures the size distribution of particles in the oil has been developed in order to monitor the state of engines and transmissions in operation. It is a widely known fact that when an engine or transmission seizes or experiences unusual wear, comparatively large pieces of wear debris are released. The goal of the use of the apparatus is to detect these particles of wear debris, stop testing before damage occurs, and clarify the causes. Seizure was, therefore, artificially induced in a transmission, and the wear debris in the oil was closely analyzed following the test. The results showed that when the simulated seizure occurred, large, elongated particles of wear debris were produced. Similar wear debris was observed in oil recovered from the market following the seizure of a component, and at present this is believed to be a type of wear debris characteristic of seizure.
Journal Article

Anisotropic Material Damage Model of Randomly Oriented Thermoplastic Composites for Crash Simulation

2020-04-14
2020-01-1305
In this research, a material model was developed that has orthotropic properties with respect to in-plane damage to support finite element strength analysis of components manufactured from a randomly oriented long-fiber thermoplastic composite. This is a composite material with randomly oriented bundles of carbon fibers that are approximately one inch in length. A macroscopic characteristic of the material is isotropic in in-plane terms, but there are differences in the tension and compression damage properties. In consideration of these characteristics, a material model was developed in which the damage evolution rate is correlated with thermodynamic force and stress triaxiality. In-plane damage was assumed to be isotropic with respect to the elements. In order to validate this material model, the results from simulation and three-point bending tests of closed-hat-section beams were compared and found to present a close correlation.
Journal Article

Multi-Scale Structural Analysis on Rubber Seal for Battery Pack

2020-04-14
2020-01-0498
A rubber sealing for a water-cooled battery pack plays a significant role to prevent water immersion into the inside of the pack. The appropriate design including the adjacent parts achieves a weight reduction of the battery pack by reducing the battery tray thickness and the quantity of bolts used in the whole battery pack. Generally, finite element analysis (FEA) is effective for the design optimization before proto-typing. However, the application to the sealing for a battery pack requires a large scale analysis, including the complicated contacts and large deformation of the rubber sealing, and results in unpractically long computation time and frequent computation errors due to the finite element distortion. A multi-scale structural analysis and the process on the rubber sealing for the battery pack has been developed to solve the above issues. This approach consists of 3 steps, which are single-unit, entire-scale and detailed structural analysis.
Technical Paper

Powertrain Thermal System Development for Small BEV

2020-04-14
2020-01-1383
The dynamic performance of battery electric vehicles (BEV) is affected by battery output power, which depends on state of charge (SOC) and the temperature of battery cells. The temperature of the batteries varies in particular with the environment, in which the user stores the vehicle, and the battery output power. It is therefore necessary to employ thermal management systems that can control the battery temperature within the optimal range under severely hot and cold conditions in BEVs. A highly sophisticated thermal management system and its operation strategy were developed to fulfill the above requirements. The powertrain components to be thermo-controlled were located into two coolant circuits having different temperature range. The compact and efficient front-end heat exchangers were designed to optimally balance the cooling performance of powertrain, cabin comfort, vehicle aerodynamics and the vehicle design.
Technical Paper

Multi-Objective Optimization of Control Parameters for Hybrid and Electric Vehicles Using 1D CAE Model

2020-04-14
2020-01-0247
Since the operation of the powertrain system and the engine speed and torque are determined in the ECU in hybrid vehicles, control parameters in these vehicles are more sensitive to a variety of performance factors than those employed in conventional vehicles. The three performance factors acceleration performance, NVH and fuel consumption in particular are in a tradeoff relationship, the calibration of control parameters in order to satisfy these performance targets entail considerable development costs. Given this, it is possible to increase the efficiency of hybrid vehicle development by determining Pareto design solutions for the three performance factors via multi-objective optimization using CAE, and selecting target performance and control parameters based on these Pareto design solutions.
Technical Paper

Development of Intelligent Power Unit for 2018 Model Year Accord Hybrid

2019-04-02
2019-01-0592
A compact intelligent power unit capable of being installed under the rear seating was developed for the 2018 model year Accord Hybrid that is to be equipped with the SPORT HYBRID Intelligent Multi Mode Drive (i-MMD) system. The space under the rear seat features multiple constraints on dimensions. In the longitudinal direction, it is necessary to attempt to help ensure occupant leg room and to position the fuel tank; in the vertical direction, it is necessary to attempt to help ensure occupants comfort and a minimum ground clearance; and in the lateral direction, it is necessary to avoid the position of the body side frames and the penetrating section of the exhaust pipe. The technologies described below were applied in order to reduce the size of components, making it possible to position the IPU amid these constraint conditions.
Technical Paper

Life Estimation of Rolling Bearings Based on the Colors on Sliding Surfaces

2019-04-02
2019-01-0180
It is experimentally known that the surface color of bearing balls gradually becomes brown during long term operation of the bearings under appropriate lubrication conditions. That exhibits the possibility of an estimation method for residual life of ball bearings without any abnormal wear on the surfaces by precise color measurements. Therefore, we examined what set colors on bearing balls by surface observation using scanning electron microscopy and subsurface analysis using transmission electron microscopy. Results showed that an amorphous carbon layer had gradually covered ball surfaces during operation of the bearings. The layer not only changed ball color but also made overall ball shapes closer to a complete sphere. The report also introduces a uniquely developed color analyzer which enabled color measurements on metallic surfaces, such as the above-mentioned balls.
Technical Paper

An Investigation of a Reduction Method of the Body Vibration at a Situation of Engine Start-Stop

2019-04-02
2019-01-0785
In recent years, electrification of powertrains has been promoted to improve fuel efficiency and CO2 emissions. Along with electrification, it is possible to reduce engine usage frequency and improve the fuel efficiency in traveling. Especially in a hybrid electric vehicle (HEV), the state changes from motor assist mode to engine firing mode. As a result, stay time in eigenvalue of a powertrain is shortened, and vibration of the vehicle body at the engine start situation is able to be reduced as compared with conventional engine-driven vehicle. However, since the HEV is equipped with a high compression ratio engine for improving fuel economy, there is cause for concern that excitation force generated by the powertrain at the time of engine start increases. Also, the vehicle body vibration at engine start situations requires further consideration, because the operation frequency of engine decreases.
Technical Paper

Analysis of the Pressure Drop Increase Mechanism by Ash Accumulated of Coated GPF

2019-04-02
2019-01-0981
With accelerating exhaust gas regulations in recent years, not only CO / HC / NOx but also PN regulation represented by Euro 6 d, China 6 are getting stricter. PN reduction by engine combustion technology development also progresses, but considering RDE, PN reduction by after treatment technology is also indispensable. To reduce PN exhausted from the gasoline engine, it is effective to equip GPF with a filter structure. Considering the installation of GPF in limited space, we developed a system that so far replaces the second TWC with GPF for the TWC 2 bed system. In order to replace the second TWC with GPF, we chose the coated GPF with filtering and TWC functions. Since the initial pressure drop and the catalyst amount (purification performance) of coated GPF have a conflicting relationship, we developed the coated GPF that can achieve both the low initial pressure drop and high purification performance.
Technical Paper

Design of High Performance Coated GPF with 2D/3D Structure Analysis

2019-04-02
2019-01-0977
In recent years along with stringent the regulations, vehicles equipped with gasoline particulate filter (GPF) have started to launch. Compared to bare GPF, coated GPF (cGPF) requires not only PN filtration efficiency, low pressure drop, but also purification performance. In the wall flow type cGPF having a complicated the pore shape, the pore structure further irregularly changes depending on the coated state of the catalyst, so it is difficult to understand the matter of in-wall. In order to advance of cGPF function, it was researched that revealing the relevance between pore structure change in the wall and GPF function. Therefore, to understand the catalyst coated state difference, cGPF of several coating methods were prepared, and their properties were evaluated by various analyses, and performance was tested.
Technical Paper

Numerical Modeling Study of Detailed Gas Diffusivity into Catalyst Washcoat for Lean NOx Catalyst

2019-04-02
2019-01-0993
To evaluate the relationship between the exhaust gas purification performance and the catalyst pore properties related to gas diffusion, an elementary reaction model was combined with gas diffusion into catalyst pores, referred to as the pseudo-2D gas diffusion/reaction model. It was constructed for Pt/Al2O3 + CeO2 catalyst as lean NOx catalyst. The gas diffusion was described as macro pore diffusion between the catalyst particles and meso pore diffusion within the particle. The kinetic model was composed of 26 reactions of NO/CO/O2 chemistry including 17 Pt/Al2O3 catalyst reactions and 9 CeO2 reactions. Arrhenius parameters were optimized using activity measurement results from various catalysts with various pore properties, meso pore volume and diameter, macro pore volume and diameter, particle size, and washcoat thickness. Good agreement was achieved between the measured and calculated values.
Technical Paper

Robust Design on Adhesive Material and Bonding Process for Automotive Battery Pack

2019-04-02
2019-01-0160
Adhesive bonding is a key technology for the lighter weight of battery pack trays using aluminum material. A robust design method of adhesive bonding with the required strength for battery pack structure after degradation was developed to minimize variability of strength under various noise conditions. The parameter design based on Taguchi methods determined the optimum adhesive condition of the bonding process. To guarantee strength after degradation, it is essential to select a robust adhesive material and to minimize the strength variation derived from the adhesive material. The functional evaluation, which includes experimental design method, determined adhesive material with the minimum strength variation among material candidates. Then, robustness of the adhesive material itself has been evaluated as the result of collaboration with the adhesive material supplier. This analysis was able to regulate the compound ratio of raw materials without reducing the adhesive strength.
Journal Article

Development of Motor with Heavy Rare Earth-Free Magnet for Two-Motor Hybrid System

2019-04-02
2019-01-0600
Conventional HEV motors use neodymium magnets with added heavy rare earths, to realize high output and size reduction. However, deposits of heavy rare earths such as Dysprosium (Dy) and Terbium (Tb) are unevenly distributed, so it is important to reduce the amount used, because of supply issue and material cost. In this paper, the application of a heavy rare earth-free magnet is considered on the new motor for a two-motor hybrid system. Compared to conventional neodymium magnets, heavy rare earth free magnets tend to have low coercivity. Also, heavy rare earth-free magnet have low thermal durability, so it is not easy to apply them to motors for a two-motor hybrid system, which requires high output and small size. The motor requires twice as much torque and six times output than one-motor hybrid system. Increase demagnetization resistance and magnet cooling performance is studied by development of the new motor.
X