Refine Your Search

Topic

Author

Search Results

Technical Paper

Development of Intelligent Power Unit for 2018 Model Year Accord Hybrid

2019-04-02
2019-01-0592
A compact intelligent power unit capable of being installed under the rear seating was developed for the 2018 model year Accord Hybrid that is to be equipped with the SPORT HYBRID Intelligent Multi Mode Drive (i-MMD) system. The space under the rear seat features multiple constraints on dimensions. In the longitudinal direction, it is necessary to attempt to help ensure occupant leg room and to position the fuel tank; in the vertical direction, it is necessary to attempt to help ensure occupants comfort and a minimum ground clearance; and in the lateral direction, it is necessary to avoid the position of the body side frames and the penetrating section of the exhaust pipe. The technologies described below were applied in order to reduce the size of components, making it possible to position the IPU amid these constraint conditions.
Technical Paper

A Study of Vibration Reducing Effect on Vehicle Dynamics by Hydraulic Damper on Body Structure

2019-04-02
2019-01-0171
This research investigated the mechanism of the effects of hydraulic dampers, which are attached to vehicle body structures and are known by experience to suppress vehicle body vibration and enhance ride comfort and steering stability. In investigating the mechanism, we employed quantitative data from riding tests, and analytical data from simplified vibration models. In our assessment of ride comfort in riding tests using vehicles equipped with hydraulic dampers, we confirmed effects reducing body floor vibration in the low-frequency range. We also confirmed vibration reduction in unsprung suspension parts to be a notable mechanical characteristic which merits close attention in all cases. To investigate the mechanism of the vibration reduction effect in unsprung parts, we considered a simplified vibration model, in which the engine and unsprung parts, which are rigid, are linked to the vehicle body, which is an elastic body equipped with hydraulic dampers.
Technical Paper

Prediction of Ductile Fracture Propagation of High Strength Steels in Automotive Structures

2019-04-02
2019-01-1097
Initiation and propagation of ductile fractures in crashed automotive components made from high strength steels are investigated in order to understand the mechanism of fracture propagation. Fracture of these components is often prone to occur at the sheet edge in a strain concentration zone under crash deformation. The fracture then extends intricately to the inside of the structure under the influence of the local stress and strain field. In this study, a simple tensile test and a 3-point bending test of high strength steels with tensile strengths of 590 MPa and 1180 MPa are carried out. In the tensile test, a coupon having a hole and a notch is deformed in a uniaxial condition. The effect of the notch type on the strain concentration and fracture behavior are investigated by using a digital imaging strain measurement system.
Journal Article

A New Variable Screening Method for Design Optimization of Large-Scale Problems

2015-04-14
2015-01-0478
Design optimization methods are commonly used for weight reduction subjecting to multiple constraints in automotive industry. One of the major challenges remained is to deal with a large number of design variables for large-scale design optimization problems effectively. In this paper, a new approach based on fuzzy rough set is proposed to address this issue. The concept of rough set theory is to deal with redundant information and seek for a reduced design variable set. The proposed method first exploits fuzzy rough set to screen out the insignificant or redundant design variables with regard to the output functions, then uses the reduced design variable set for design optimization. A vehicle body structure is used to demonstrate the effectiveness of the proposed method and compare with a traditional weighted sensitivity based main effect approach.
Journal Article

Strength Analysis of CFRP Composite Material Considering Inter-Laminar Fractures

2015-04-14
2015-01-0694
The strength characteristic of CFRP composite materials is often dependent on the internal micro-structural fracture mode. When performing a simulation on composite structures, it is necessary to take the fracture mode into account, especially in an automobile body structure with a complex three-dimensional shape, where inter-ply fractures tend to appear due to out-of-plane load inputs. In this paper, an energy-based inter-ply fracture model with fracture toughness criteria, and an intra-ply fracture model proposed by Ladeveze et al. were explained. FEM analyses were performed on three-dimensional test specimens applying both fracture models and the simulated results were compared with experimental ones. Reproducibility of the fracture mode was confirmed and the importance of combining both models was discussed.
Journal Article

Study on Analysis of Input Loads to Motorcycle Frames in Rough Road Running

2014-11-11
2014-32-0021
In this study, we developed a simulation method for rough road running condition to reproduce the behaviors of a vehicle body and to precisely estimate the input loads to the frame. We designed the simulation method focusing on a front fork model and a rider model optimized for this type of analysis. In the suspension model development, we conducted detailed measurement of the suspension characteristics on a test bench. Based on the yielded results, the friction force, as well as the spring reaction force and the damping force, was reproduced in the suspension model. The friction of the suspension varies depending on the magnitude of the reaction force associated with bending and this effect was also implemented in the model. Regarding the rider model, the actual behavior of a rider was investigated through the recorded motion video data and used to define the necessary degrees of freedom.
Technical Paper

Simplified Approach of Chassis Frame Optimization for Durability Performance

2014-04-01
2014-01-0399
In recent trend, there is a huge demand for lightweight chassis frame, which improves fuel efficiency and reduces cost of the vehicle. Stiffness based optimization process is simple and straightforward while durability (life) based optimizations are relatively complex, time consuming due to a two-step (Stress then life) virtual engineering process and complicated loading history. However, durability performances are critical in chassis design, so a process of optimization with simplified approach has been developed. This study talks about the process of chassis frame weight optimization without affecting current durability performance where complex durability load cases are converted to equivalent static loadcases and life targets are cascaded down to simple stress target. Sheet metal gauges and lightening holes are the parameters for optimization studies. The optimization design space is constrained to chassis unique parts.
Technical Paper

Investigation of a Simplified Vehicle Model that Can Reproduce Car-Pedestrian Collisions

2014-04-01
2014-01-0514
Japanese accident statistics show that despite the decreasing trend of the overall traffic fatalities, more than 1,000 pedestrians are still killed annually in Japan. One way to develop further understanding of real-world pedestrian accidents is to reconstruct a variety of accident scenarios dynamically using computational models. Some of the past studies done by the authors' group have used a simplified vehicle model to investigate pedestrian lower limb injuries. However, loadings to the upper body also need to be reproduced to predict damage to the full body of a pedestrian. As a step toward this goal, this study aimed to develop a simplified vehicle model capable of reproducing pedestrian full-body kinematics and pelvis and lower limb injury measures. The simplified vehicle model was comprised of four parts: windshield, hood, bumper and lower part of the bumper. Several different models were developed using different combinations of geometric and stiffness representation.
Technical Paper

A Study on Body Panel Stress Analysis under Distributed Loads

2014-04-01
2014-01-0906
In this paper, four possible CAE analysis methods for calculating critical buckling load and post-buckling permanent deformation after unloading for geometry imperfection sensitive thin shell structures under uniformly distributed loads have been investigated. The typical application is a vehicle roof panel under snow load. The methods include 1) nonlinear static stress analysis, 2) linear Eigen value buckling analysis 3) nonlinear static stress analysis using Riks method with consideration of imperfections, and 4) implicit quasi-static nonlinear stress analysis with consideration of imperfections. Advantage and disadvantage of each method have been discussed. Correlations between each of the method to a physical test are also conducted. Finally, the implicit quasi-static nonlinear stress analysis with consideration of geometry imperfections that are scaled mode shapes from linear Eigen value buckling analysis is preferred.
Technical Paper

Vehicle Body Panel Thermal Buckling Resistance Analysis

2014-04-01
2014-01-0926
This paper discusses CAE simulation methods to predict the thermal induced buckling issues when vehicle body panels are subjected to the elevated temperature in e-coat oven. Both linear buckling analysis and implicit quasi-static analysis are discussed and studied using a quarter cylinder shell as an example. The linear buckling analysis could produce quick but non-conservative buckling temperature. With considering nonlinearity, implicit quasi-static analysis could predict a relative conservative critical temperature. In addition, the permanent deformations could be obtained to judge if the panel remains visible dent due to the buckling. Finally these two approaches have been compared to thermal bucking behavior of a panel on a vehicle going through thermal cycle of e-coat oven with the excellent agreement on its initial design and issue fix design. In conclusion, the linear buckling analysis could be used for quick thermal buckling evaluation and comparison on a series of proposals.
Technical Paper

A Technique to Predict Thermal Buckling in Automotive Body Panels by Coupling Heat Transfer and Structural Analysis

2014-04-01
2014-01-0943
This paper describes a comprehensive methodology for the simulation of vehicle body panel buckling in an electrophoretic coat (electro-coat or e-coat) and/or paint oven environment. The simulation couples computational heat transfer analysis and structural analysis. Heat transfer analysis is used to predict temperature distribution throughout a vehicle body in curing ovens. The vehicle body temperature profile from the heat transfer analysis is applied as an input for a structural analysis to predict buckling. This study is focused on the radiant section of the curing ovens. The radiant section of the oven has the largest temperature gradients within the body structure. This methodology couples a fully transient thermal analysis to simulate the structure through the electro-coat and paint curing environments with a structural, buckling analysis.
Technical Paper

Automotive Vehicle Body Temperature Prediction in a Paint Oven

2014-04-01
2014-01-0644
Automotive vehicle body electrophoretic (e-coat) and paint application has a high degree of complexity and expense in vehicle assembly. These steps involve coating and painting the vehicle body. Each step has multiple coatings and a curing process of the body in an oven. Two types of heating methods, radiation and convection, are used in the ovens to cure coatings and paints during the process. During heating stage in the oven, the vehicle body has large thermal stresses due to thermal expansion. These stresses may cause permanent deformation and weld/joint failure. Body panel deformation and joint failure can be predicted by using structural analysis with component surface temperature distribution. The prediction will avoid late and costly changes to the vehicle design. The temperature profiles on the vehicle components are the key boundary conditions used to perform structure analysis.
Journal Article

Development of Corrosion Testing Protocols for Magnesium Alloys and Magnesium-Intensive Subassemblies

2013-04-08
2013-01-0978
Corrosion tendency is one of the major inhibitors for increased use of magnesium alloys in automotive structural applications. Moreover, systematic or standardized methods for evaluation of both general and galvanic corrosion of magnesium alloys, either as individual components or eventually as entire subassemblies, remains elusive, and receives little attention from professional and standardization bodies. This work reports outcomes from an effort underway within the U.S. Automotive Materials Partnership - ‘USAMP’ (Chrysler, Ford and GM) directed toward enabling technologies and knowledge base for the design and fabrication of magnesium-intensive subassemblies intended for automotive “front end” applications. In particular, subassemblies consisting of three different grades of magnesium (die cast, sheet and extrusion) and receiving a typical corrosion protective coating were subjected to cyclic corrosion tests as employed by each OEM in the consortium.
Journal Article

An Efficient, One-Dimensional, Finite Element Helical Spring Model for Use in Planar Multi-Body Dynamics Simulation

2013-04-08
2013-01-1118
The helical spring is one of fundamental mechanical elements used in various industrial applications such as valves, suspension mechanisms, shock and vibration absorbers, hand levers, etc. In high speed applications, for instance in the internal combustion engine or in reciprocating compressor valves, helical springs are subjected to dynamic and impact loading, which can result in a phenomenon called “surge”. Hence, proper design and selection of helical springs should consider modeling the dynamic and impact response. In order to correctly characterize the physics of a helical spring and its response to dynamic excitations, a comprehensive model of spring elasticity for various spring coil and wire geometries, spring inertial effects as well as contacts between the windings leading to a non-linear spring force behavior is required. In practical applications, such models are utilized in parametric design and optimization studies.
Technical Paper

CAE Simulation of Door Sag/Set Using Subsystem Level Approach

2013-04-08
2013-01-1199
The performance of door assembly is very significant for the vehicle design and door sag/set is one of the important attribute for design of door assembly. This paper provides an overview of conventional approach for door sag/set study based on door-hinge-BIW assembly (system level approach) and its limitation over new approach based on subassembly (subsystem level approach). The door sag/set simulation at system level is the most common approach adopted across auto industry. This approach evaluates only structural adequacy of door assembly system for sag load. To find key contributor for door sagging is always been time consuming task with conventional approach thus there is a delay in providing design enablers to meet the design target. New approach of door sag/set at “subsystem level” evaluates the structural stiffness contribution of individual subsystem. It support for setting up the target at subsystem level, which integrate and regulate the system level performance.
Technical Paper

Structure to Assist in the Prevention of Bimetallic Corrosion of Hybrid Doors

2013-04-08
2013-01-0386
The use of low-density materials in body panels is increasing as a measure to reduce the weight of the vehicle body. Honda has developed an aluminum/steel sheet hybrid door that is more effective in reducing weight than an all-aluminum door. Because aluminum was used in the door skin, bimetallic corrosion at the connection between the aluminum and the steel sheets represented an issue. It was possible that the difference in the electrical potential of the two metals might promote corrosion at the connection between the aluminum door skin and the steel sheet door panel, in particular at the lower edge of the door, where rainwater and other moisture tend to accumulate, with the result that the appeal of the exterior of the door might decline.
Technical Paper

The Impact of Vehicle Front End Design on AC Performance

2013-04-08
2013-01-0859
Vehicle front end air flow management affects many aspects of vehicle aero/thermal performances. The HVAC system capacity is greatly driven by the airflow and the air temperature received at the condenser. In this paper, front end design practices are investigated using computer simulation and full vehicle test to evaluate their effects on AC system performance. A full vehicle 3D CFD model is developed and used to predict the airflow and temperature in underhood and around the vehicle body, and specifically the conditions entering the condenser. The condenser inlet airflow and temperature profiles from 3D CFD model are then used as inputs for the 1D AC system model. The 1D AC system model, which includes condenser, compressor, evaporator and TXV (Thermal eXpansion Valve), is developed to observe the critical AC performance indicators such as panel out air temperature and compressor head pressure.
Technical Paper

Application of Load Path Index U* for Evaluation of Sheet Steel Joint with Spot Welds

2012-04-16
2012-01-0534
An attempt was made to apply the index U* in detail analysis of load paths in structural joints under static load, using as examples coupling structures of two joined frames with hat-shaped sections, and T-beam joint structures each including spot welds, both of which are widely used in automotive body structures. U* is a load path analysis index that expresses the strength of connection between load points and arbitrary points on a structure. It was possible to identify areas making up load paths by means of the magnitude of U* values, and to clarify the areas that should be coupled in order to achieve effective load transfer to contiguous members. In addition, because it is possible to determine whether or not each section of a structure possesses the potential for load transfer using U* analysis, the research also demonstrated that U* could be used as an indicator of joint structures providing efficient load transfer.
Journal Article

Introduction of New Concept U*sum for Evaluation of Weight-Efficient Structure

2011-04-12
2011-01-0061
A new index U* for evaluating load path dispersion is proposed, using a structural load path analysis method based on the concept of U*, which expresses the connection strength between a load point and an arbitrary point within the structure. U* enables the evaluation of the load path dispersion within the structure by statistical means such as histograms and standard deviations. Different loading conditions are applied to a body structure, and the similarity of the U* distributions is evaluated using the direction cosine and U* 2-dimensional correlation diagrams. It is shown as a result that body structures can be macroscopically grasped by using the U* distribution rather than using the stress distribution. In addition, as an example, the U* distribution of torsion loading condition is shown to comprehensively include characteristics of the U* distribution of other loading conditions.
Technical Paper

New Proposal of Piston Skirt Form using Multi Objective Optimization Method

2011-04-12
2011-01-1079
A multi-objective optimization model using a piston behavior simulation for the prediction of NV, friction and scuffing was created. This model was used to optimize the piston skirt form, helping to enable well-balanced forms to be sought. Optimization calculations, involving extended analyses and numerous design variables, conventionally necessitate long calculation times in order to achieve adequate outcomes. Because of this, in the present project data was converted into functions in order to help enable the complex piston skirt form to be expressed using a small amount of coefficients. Using the limit values for manufacturability and the degree of contribution to the target functions, the scope of design variables was restricted, and the time necessary for the analysis was significantly reduced. This has helped to enable optimal solutions to be determined within a practical time frame.
X