Refine Your Search

Topic

Author

Search Results

Technical Paper

Vibrational Analysis Method on High-frequency Electric-drive Motor Noise

2020-04-14
2020-01-0463
When a vehicle is cruising, unpleasant noise in the 4 to 5 KHz high-frequency band can be heard at the center of all seats in the vehicle cabin. In order to specify the source of this noise, the correlation between the noise and airborne noise from the outer surface of the transmission was determined, and transfer path analysis was conducted for the interior of the transmission. The results indicated that the source of the noise was the 0th-order breathing mode specific to the drive motor. To make it possible to predict this at the desk, a vibrational analysis method was proposed for drive motors made up of laminated electrical steel sheets and segment-type coils. Material properties data for the electrical steel sheets and coils was employed in the drive motor vibrational analysis model without change. The shapes of the laminated electrical steel sheets and coils were also accurately modeled.
Technical Paper

Analysis of CVT Element Vibration by In-Situ Measurement

2020-04-14
2020-01-0906
When the belt contacts a pulley in a pushing belt-type CVT, vibration is generated by frictional force due to rubbing between the individual elements that are components of the belt, which is said to increase wear and noise. The authors speculated that the source of that vibration is misalignment of the secondary pulley and primary pulley V-surfaces. To verify that phenomenon, a newly developed micro data logger was attached to an element of a mass-produced metal pushing V-belt CVT and the acceleration was measured at rotations equal to those at drive (1000 to 2500 r/m). In addition, the results of calculations using a behavior analysis model showed that changes in pulley misalignment influence element vibration, and that the magnitude of the vibration is correlated to the change in the metal pushing V-belt alignment immediately before the element contacts the pulley.
Technical Paper

Residual Stress Analysis for Additive Manufactured Large Automobile Parts by Using Neutron and Simulation

2020-04-14
2020-01-1071
Metal additive manufacturing has high potential to produce automobile parts, due to its shape flexibility and unique material properties. On the other hand, residual stress which is generated by rapid solidification causes deformation, cracks and failure under building process. To avoid these problems, understanding of internal residual stress distribution is necessary. However, from the view point of measureable area, conventional residual stress measurement methods such as strain gages and X-ray diffractometers, is limited to only the surface layer of the parts. Therefore, neutron which has a high penetration capability was chosen as a probe to measure internal residual stress in this research. By using time of flight neutron diffraction facility VULCAN at Oak Ridge National Laboratory, residual stress for mono-cylinder head, which were made of aluminum alloy, was measured non-distractively. From the result of precise measurement, interior stress distribution was visualized.
Journal Article

Metal Belt CVT Seizure Monitoring System Using Wear Debris Analysis and Particle Measurement

2020-04-14
2020-01-0907
An apparatus that automatically samples lubricating oil and measures the size distribution of particles in the oil has been developed in order to monitor the state of engines and transmissions in operation. It is a widely known fact that when an engine or transmission seizes or experiences unusual wear, comparatively large pieces of wear debris are released. The goal of the use of the apparatus is to detect these particles of wear debris, stop testing before damage occurs, and clarify the causes. Seizure was, therefore, artificially induced in a transmission, and the wear debris in the oil was closely analyzed following the test. The results showed that when the simulated seizure occurred, large, elongated particles of wear debris were produced. Similar wear debris was observed in oil recovered from the market following the seizure of a component, and at present this is believed to be a type of wear debris characteristic of seizure.
Journal Article

Development of Cooling Fan Model and Heat Exchange Model of Condenser to Predict the Cooling and the Heat Resistance Performance of Vehicle

2020-04-14
2020-01-0157
The cooling performance and the heat resistance performance of commercial vehicle are balanced with aerodynamic performance, output power of powertrain, styling, cost and many other parameters. Therefore, it is desired to predict the cooling performance and the heat resistance performance with high accuracy at the early stage of development. Among the three basic forms of heat transfer (conduction, convection and radiation), solving thermal conduction accurately is difficult, because modeling of “correct shape” and setting of coefficient of thermal conductivity for each material need many of time and efforts at the early stage of development. Correct shape means that each part should be attached correctly to generate the solid mesh with high quality. Therefore, it is more efficient and realistic method to predict the air temperature distribution around the rubber/resin part instead of using the surface temperature at the preliminary design stage.
Technical Paper

Life Estimation of Rolling Bearings Based on the Colors on Sliding Surfaces

2019-04-02
2019-01-0180
It is experimentally known that the surface color of bearing balls gradually becomes brown during long term operation of the bearings under appropriate lubrication conditions. That exhibits the possibility of an estimation method for residual life of ball bearings without any abnormal wear on the surfaces by precise color measurements. Therefore, we examined what set colors on bearing balls by surface observation using scanning electron microscopy and subsurface analysis using transmission electron microscopy. Results showed that an amorphous carbon layer had gradually covered ball surfaces during operation of the bearings. The layer not only changed ball color but also made overall ball shapes closer to a complete sphere. The report also introduces a uniquely developed color analyzer which enabled color measurements on metallic surfaces, such as the above-mentioned balls.
Technical Paper

Development of High Appearance Water Born Primer Surfacer Coating for Short Process Body Paint

2019-04-02
2019-01-0189
4C3B (4 coat 3 bake) painting system (see Figure 1) which needs a bake process after the primer surfacer paint was very general and common process for the automotive body painting system. In the beginning of the 2000s, 4C2B painting system (Reference 1) was developed which changed the oven after the primer surfacer paint to a pre heat area, so it can reduce the carbon dioxide (Figure 1, and Figure 2). But unfortunately in this 4C2B painting system, the base coat will be painted on the primer surfacer paint wet-on-wet. By that reason, the appearance deterioration will occur often. The authors used a low temperature crosslinking agent “Polycarbodiimide” to a water born primer surfacer paint, to control the viscosity of primer surfacer paint at the pre heat area. Controlling the viscosity is important to avoid the layer mixing of the primer surfacer paint and the base coat which makes appearance deterioration.
Technical Paper

Prediction of Ductile Fracture Propagation of High Strength Steels in Automotive Structures

2019-04-02
2019-01-1097
Initiation and propagation of ductile fractures in crashed automotive components made from high strength steels are investigated in order to understand the mechanism of fracture propagation. Fracture of these components is often prone to occur at the sheet edge in a strain concentration zone under crash deformation. The fracture then extends intricately to the inside of the structure under the influence of the local stress and strain field. In this study, a simple tensile test and a 3-point bending test of high strength steels with tensile strengths of 590 MPa and 1180 MPa are carried out. In the tensile test, a coupon having a hole and a notch is deformed in a uniaxial condition. The effect of the notch type on the strain concentration and fracture behavior are investigated by using a digital imaging strain measurement system.
Journal Article

Material and Damage Models of Randomly-Oriented Thermoplastic Composites for Crash Simulation

2019-04-02
2019-01-0814
This study developed a material model with a damage function that supports finite element analyses in crash strength analyses of beams manufactured using randomly-oriented long fiber thermoplastics composites. These materials are composites with randomly-oriented carbon tow having a fiber length of approximately one inch, and are isotropic in-plane from a macro perspective, but exhibit different damage properties for tension and compression. In the out-of-plane direction, the influence of the resin matrix properties increases, and the materials properties are similar to those of laminate materials. This means they are anisotropic materials with physical properties that differ from those in the in-plane direction. In order to verify the influence of these characteristics, the damage process was observed by three-point bending of a flat plate, which is a mixed mode that includes tension, compression, and out-of-plane shear.
Journal Article

Designing for Turbine Housing Weight Reduction Using Thermal Fatigue Crack Propagation Prediction Technology

2019-04-02
2019-01-0533
Turbine housings in car engine turbochargers, which use costly stainless steel castings, account for nearly 50% of the parts cost of a turbocharger. They are also the component which controls the competitiveness of the turbocharger, in terms of both function and cost. In this research, focusing on thermal fatigue resistance which is one of the main functions demanded of a turbine housing, achieving reduction in wall thickness while securing sufficient thermal fatigue resistance, it is possible to reduce the amount of material used in the turbine housing and aimed for cost reduction. Therefore, we built a method to quantitatively predict, using 3D FEM, the lifespan from the initiation of thermal fatigue cracking to the formation of a penetrating crack which leads to gas leakage.
Journal Article

Prediction of Wear Loss of Exhaust Valve Seat of Gasoline Engine Based on Rig Test Result

2018-04-03
2018-01-0984
The purpose of this research was to predict the amount of wear on exhaust valve seats in durability testing of gasoline engines. Through the rig wear test, a prediction formula was constructed with multiple factors as variables. In the rig test, the wear rate was measured in some cases where a number of factors of valve seat wear were within a certain range. Through these tests, sensitivity for each factor was determined from the measured wear data, and then a prediction formula for calculating the amount of wear was constructed with high sensitivity factors. Combining the wear amount calculation formula with the operation mode of the actual engine, the wear amount in that mode can be calculated. The calculated wear amount showed a high correlation with the wear amount measured in bench tests and the wear amount measured in vehicle tests.
Technical Paper

A Structural Stress Recovery Procedure for Fatigue Life Assessment of Welded Structures

2017-03-28
2017-01-0343
Over the decades, several attempts have been made to develop new fatigue analysis methods for welded joints since most of the incidents in automotive structures are joints related. Therefore, a reliable and effective fatigue damage parameter is needed to properly predict the failure location and fatigue life of these welded structures to reduce the hardware testing, time, and the associated cost. The nodal force-based structural stress approach is becoming widely used in fatigue life assessment of welded structures. In this paper, a new nodal force-based structural stress recovery procedure is proposed that uses the least squares method to linearly smooth the stresses in elements along the weld line. Weight function is introduced to give flexibility in choosing different weighting schemes between elements. Two typical weighting schemes are discussed and compared.
Technical Paper

Quantitative Analysis of Leakage Suppression of DLC Coating on Piston Ring

2017-03-28
2017-01-0457
Piston ring wear in gasoline engine induces deterioration of emissions performance due to leakage of blow-by gas, instability of idling caused by reduced compression in combustion chamber, and to generate early degeneration of engine oil. We examined anti-wear performance of DLC coating on piston ring, which had been recently reported as an effective method for improving the abrasion resistance. As a result, wear rate remained low under the condition of DLC existence on sliding surface, but once DLC was worn out completely, wear of the piston ring was accelerated and its life became shorter than piston ring without DLC. In this research, we designed reciprocating test apparatus that operates at much higher velocity range, and characterized the frictional materials of the piston ring and sleeve and the DLC as a protective film, a vapor phase epitaxy (VPE) was actively used as a means to form certain level of convex and concave shape on its surface.
Technical Paper

Paint Bake Influence on AA7075 and AA7085

2017-03-28
2017-01-1265
The typical paint bake cycle includes multiple ramps and dwells of temperature through e-coat, paint, and clear coat with exposure equivalent to approximately 190°C for up to 60 minutes. 7xxx-series aluminum alloys are heat treatable, additional thermal exposure such as a paint bake cycle could alter the material properties. Therefore, this study investigates the response of three 7xxx-series aluminum alloys with respect to conductivity, hardness, and yield strength when exposed to three oven curing cycles of a typical automotive paint operation. The results have indicated that alloy composition and artificial aging practice influence the material response to the various paint bake cycles.
Technical Paper

Prediction of Piston Skirt Scuffing via 3D Piston Motion Simulation

2016-04-05
2016-01-1044
This paper describes the establishment of a new method for predicting piston skirt scuffing in the internal combustion engine of a passenger car. The authors previously constructed and reported a method that uses 3D piston motion simulation to predict piston slap noise and piston skirt friction. However, that simulation did not have a clear index for evaluation of scuffing that involves piston skirt erosion, and it impressed shortage of the predictive accuracy of a scuffing. Therefore, the authors derived a new evaluation index for piston skirt scuffing by actually operating an internal combustion engine using multiple types of pistons to reproduce the conditions under which scuffing occurs, and comparing with the results of calculating the same conditions by piston motion simulation.
Technical Paper

Engine Seizure Monitoring System Using Wear Debris Analysis and Particle Measurement

2016-04-05
2016-01-0888
Several attempts have been reported in the past decade or so which measured the sizes of particles in lubricant oil in order to monitor sliding conditions (1). Laser light extinction is typically used for the measurement. It would be an ideal if only wear debris particles in lubricant oil could be measured. However, in addition to wear debris, particles such as air bubbles, sludge and foreign contaminants in lubricant oil are also measured. The wear debris particles couldn't have been separated from other particles, and therefore this method couldn't have been applied to measurement devices for detection when maintenance service is required and how the wear state goes on. It is not possible to grasp the abnormal wear in real time by the conventional techniques such as intermittent Ferro graphic analysis. In addition, it is no way to detect which particle size to be measured by the particle counter alone.
Journal Article

Positioning Simulation Using a 3D Map and Verification of Positional Estimation Accuracy in Urban Areas Using Actual Measurement

2016-04-05
2016-01-0083
Positional accuracy of GPS measurement has been based on simulation and actual measurement due to the difficulty of conducting 24-hour actual running tests. However, the conventional measurement is only based on brief evaluation; hence variability of positional accuracy which varies depending on measurement time and location had been an issue. Thus, it is significant to show the validity by the estimation of positional accuracy, and actual measurement using of lengthy simulation. In this study, actual measurement data in an urban area was obtained for long hours, and a simulation using 3D maps was implemented. A high precision positional measurement system was equipped on a vehicle in order to collect actual measurements and positional data at each measurement time. The data obtained by the measurement system was used as the reference coordinate for both the simulation and the actual measurements.
Journal Article

Fretting Analysis of an Engine Bearing Cap Using Computer Simulation

2016-04-05
2016-01-1083
The independent bearing cap is a cylinder block bearing structure that has high mass reduction effects. In general, this structure has low fastening stiffness compared to the rudder block structure. Furthermore, when using combination of different materials small sliding occurs at the mating surface, and fretting fatigue sometimes occurs at lower area than the material strength limit. Fretting fatigue was previously predicted using CAE, but there were issues with establishing a correlation with the actual engine under complex conditions, and the judgment criteria were not clear, so accurate prediction was a challenge. This paper reports on a new CAE-based prediction method to predict the fretting damage occurring on the bearing cap mating surface in an aluminum material cylinder block. First of all, condition a fretting fatigue test was performed with test pieces, and identification of CAE was performed for the strain and sliding amount.
Journal Article

Prediction of Fatigue Strength of Motorcycle Exhaust System Considering Vibrating and Thermal Stresses

2015-11-17
2015-32-0739
A method applicable in the design stage to predict fatigue strength of a motorcycle exhaust system was developed. In this prediction method, a vibrating stress, thermal stresses, stresses resulting from the assembling of the exhaust system components and a deterioration of fatigue strength of materials originated from high temperature were simultaneously taken into account. For the prediction of the vibrating stress, flexible multibody dynamics was applied to get modeling accuracy for vibration characteristics of the entire motorcycle and the exciting force delivered from engine vibrations. The thermal conduction analysis and the thermal deformation analysis based on finite element method (FEM) were applied for the prediction of thermal stresses in the exhaust system components. The temperature distribution on the surfaces of the exhaust system components is required for calculations of the thermal stresses.
Journal Article

New Theoretical Approach for Weight Reduction on Cylinder Head

2015-04-14
2015-01-0495
Designing a lightweight and durable engine is universally important from the standpoints of fuel economy, vehicle dynamics and cost. However, it is challenging to theoretically find an optimal solution which meets both requirements in products such as the cylinder head, to which various thermal loads and mechanical loads are simultaneously applied. In our research, we focused on “non-parametric optimization” and attempted to establish a new design approach derived from the weight reduction of a cylinder head. Our optimization process consists of topology optimization and shape optimization. In the topology optimization process, we explored an optimal structure with the theoretically-highest stiffness in the given design space. This is to provide an efficient structure for pursuing both lightweight and durable characteristics in the subsequent shape optimization process.
X