Refine Your Search

Topic

Author

Search Results

Technical Paper

Leveraging DOConFilter to Improve Exhaust System Packaging

2024-04-09
2024-01-2131
Diesel Particulate Filters (DPF) made of cordierite are generally used for diesel engine aftertreatment systems in both on-road and commercial off-highway vehicles to meet today’s worldwide emission regulations. PM/PN and NOx emission regulations will become more stringent worldwide, as represented by CARB2027 and Euro7. Technologies that can meet these strict regulations are required. As a result, aftertreatment systems have become more complex with limited space. Recently, off-highway OEMs have been interested in downsizing the aftertreatment system using concepts such as DOConFilter in an effort to reduce the size of the exhaust system. DOConFilter can effectively replace DOC + CSF or DOC + bare DPF systems with a single zone coated particulate filter. DOConFilter systems have an increased amount of coating compared to CSF as higher-filtration filters will become the norm. An undesirable increase in pressure drop is expected by adopting this new technology.
Technical Paper

Gasoline Particulate Filter with Membrane Technology to Achieve the Tight PN Requirement

2023-04-11
2023-01-0394
The LDV gasoline emission regulation is set to be tightened for Euro7. In particular, the particulate number (PN) requirement has been significantly tightened requiring a GPF with extra - high filtration efficiency to meet the target requirement. In order to meet the stricter PN requirements, GPF substrate material improvement is necessary. However, conventional GPF material improvement for high filtration efficiency will increase the filter backpressure significantly. The relationship between pressure drop and CO2 emission is difficult to quantify but high pressure drop can potentially increase the CO2 emission. Therefore, Membrane Technology (MT) is the key to break through the trade-off between filtration performance and pressure drop. MT is thin and dense layer of small grains applied on the GPF surface. MT application can increase particulate filtration efficiency significantly with minimal pressure drop increase.
Technical Paper

High Cell Density Flow Through Substrate for New Regulations

2023-04-11
2023-01-0359
This paper, written in collaboration with Ford, evaluates the effectiveness of higher cell density combined with higher porosity, lower thermal mass substrates for emission control capability on a customized, RDE (Real Driving Emissions)-type of test cycle run on a chassis dynamometer using a gasoline passenger car fitted with a three-way catalyst (TWC) system. Cold-start emissions contribute most of the emissions control challenge, especially in the case of a very rigorous cold-start. The majority of tailpipe emissions occur during the first 30 seconds of the drive cycle. For the early engine startup phase, higher porosity substrates are developed as one part of the solution. In addition, further emission improvement is expected by increasing the specific surface area (GSA) of the substrate. This test was designed specifically to stress the cold start performance of the catalyst by using a short, 5 second idle time preceding an aggressive, high exhaust mass flowrate drive cycle.
Journal Article

New Generation Diesel Particulate Filter for Future Euro7 Regulation

2023-04-11
2023-01-0389
Diesel Particulate Filters (DPF) are becoming mandatory for many Heavy Duty Vehicle (HDV) and Non Road Mobile Machinery (NRMM) applications as the requirement for particulate filtration performance has increased over this past decade. In a previous study, a new generation of cordierite DPF was developed to meet the latest major emission regulations; PN-PEMS requirement for EuroVI StepE, while maintaining a lower pressure drop and high ash capacity. Despite the improvements made in the latest generation DPF material, the introduction of tighter particulate regulations demands further improvement in DPF technology. More specifically, PN emission limits for Euro7 under wide operation conditions in conjunction with PN down to 10nm, as described in the proposal from Consortium for Ultra Low Vehicle Emission (CLOVE), requires further improvement in PN filtration performance. Pressure drop, which may negatively influence the CO2 emissions, remains a key performance criteria.
Technical Paper

Next Generation Diesel Particulate Filter for Future Tighter HDV/NRMM Emission Regulations

2022-03-29
2022-01-0545
Heavy Duty Vehicle (HDV) Diesel emission regulations are set to be tightened in the future. The introduction of PN PEMS testing for Euro VI-e, and the expected tightening of PM/NOx targets set to be introduced by CARB in the US beyond 2024 are expected to create challenging tailpipe PN conditions for OEMs. Additionally, warranty and the useful life period will be extended from current levels. Improved fuel efficiency (reduction of CO2) also remains an important performance criteria. Furthermore, future non-road diesel emission regulations may follow tighten HDV diesel emission regulations contents, and non-road cycles evaluation needs to be considered as well for future. In response to the above tightened regulation, for Diesel Particulate Filter (DPF) technologies will require higher PN filtration performance, lower pressure drop, higher ash capacity and better pressure drop hysteresis for improved soot detectability.
Technical Paper

High-Porosity Honeycomb Substrate with Thin-Wall and High Cell Density Using for SCR Coating to Meet Worldwide Tighter Emission Regulations

2022-03-29
2022-01-0550
Selective catalyst reduction (SCR) using cordierite honeycomb substrate is generally used as a DeNOx catalyst for diesel engines exhaust in both on-road and commercial off-highway vehicles to meet today’s worldwide emission regulations. Worldwide NOx emission regulations will become stricter, as represented by CARB2027 and EuroVII. Technologies which can achieve further lower NOx emissions are required. Recently, several technologies, like increased SCR catalyst loading amount on honeycomb substrates, and additional SCR catalyst volume in positions closer to the engine are being considered to achieve ultra-low NOx emissions. However, undesirable pressure drop increase and enlarging after treatment systems will be caused by adopting these technologies. Therefore, optimization of the material and honeycomb cell structure for SCR is inevitable to achieve ultra-low NOx emissions, while minimizing any system drawbacks.
Journal Article

THC Concentration Estimation Model using FTIR Spectrum

2021-09-21
2021-01-1226
A novel total hydrocarbon (THC) emission concentration estimation model is proposed for reduction of engine development cost and simplification of exhaust measurements. The proposed method uses the absorbance spectra of a Fourier transform infrared (FTIR) spectrometer, which contains the information on a wide variety of hydrocarbons, as input. The model is based on machine learning algorithms including the least absolute shrinkage and selection operator (LASSO) regression and bagging techniques. To train the model, we created a dataset containing pairs of a spectrum of engine exhaust gas and the THC concentration. In addition, we incorporate absorbance spectra of individual hydrocarbon components and several inorganic components so that the model learns the contribution of each hydrocarbon to THC concentration and to ignore interferences of irrelevant gas components.
Technical Paper

Performance of Next Generation Gasoline Particulate Filter Materials under RDE Conditions

2019-04-02
2019-01-0980
In order to meet the challenging CO2 targets beyond 2020 without sacrificing performance, Gasoline Direct Injection (GDI) technology, in combination with turbo charging technology, is expanding in the automotive industry. However, while this technology does provide a significant CO2 reduction, one side effect is increased Particle Number (PN) emission. As a result, from September 2017, GDI vehicles in Europe are required to meet the stringent PN emission limits of 6x1011 #/km under the Worldwide harmonized Light vehicles Test Procedure (WLTP). In addition, it is required to meet PN emission of 9x1011 #/km under Real Driving Emission (RDE) testing, which includes a Conformity Factor (CF) of 1.5 to account for current measurement inaccuracies on the road. This introduction of RDE testing in Europe and China will especially provide a unique challenge for the design of exhaust after-treatment systems due to its wide boundary conditions.
Technical Paper

Development of Exhaust Heat Recovery System Using Highly Heat-Conductive SiC Honeycomb

2018-04-03
2018-01-0048
Reducing the fuel consumption of powertrains in internal combustion engines is still a major objective from an environmental viewpoint. Internal combustion engines waste a huge part of the fuel energy as heat in the exhaust line. Currently, exhaust heat recovery (EHR) systems are attracting attention as an effective means of reducing fuel consumption by collecting heat from waste exhaust gas and using it for rapid warming up of the engine and cabin heating [1, 2, 3, 4]. The benefits of the EHR system are affected by a trade-off between the efficacy of the recovered useful thermal energy and the adverse effect of the additional weight (heat mass) of the system [5]. Conventional EHR systems have a complex heat exchanger structure and a structure in which a bypass pipe and heat exchanger are connected in parallel, giving them a large size and heavy weight. We have developed a new-concept silicon carbide (SiC) heat exchanger with a dense SiC honeycomb.
Technical Paper

Development of Improved SCRonDPF Design for Future Tighter Regulations and Reduced System Packaging

2018-04-03
2018-01-0344
With the push towards more stringent on-road US heavy duty diesel regulations (i.e. HD GHG Phase 2 and the proposed ARB 20 mg/bhp-hr NOx), emission system packaging has grown critical while improving fuel economy and NOx emissions. The ARB regulations are expected to be implemented post 2023 while regulation for EU off-road segment will begin from 2019. The regulation, called Stage V, will introduce particle number (PN) regulation requiring EU OEMs to introduce a diesel particulate filter (DPF) while customer demands will require the OEMs to maintain current emission system packaging. A viable market solution to meet these requirements, especially for EU Stage V being implemented first, is a DPF coated with a selective catalyst reduction (SCR) washcoat (i.e. SCRonDPF).
Technical Paper

Particle Number Emission Reduction for GDI Engines with Gasoline Particulate Filters

2017-10-08
2017-01-2378
In order to meet the challenging CO2 targets beyond 2020 despite keeping high performance engines, Gasoline Direct Injection (GDI) technology usually combined with charged aspiration is expanding in the automotive industry. While providing more efficient powertrains to reduce fuel consumption one side effect of GDI is the increased particle formation during the combustion process. For the first time for GDI from September 2014 there is a Particle Number (PN) limit in EU of 6x10 sup 12 #/km, which will be further reduced by one order of magnitude to 6x10 sup 11 #/km effective from September 2017 to be the same level as applied to Diesel engines. In addition to the PN limit of the certification cycle NEDC further certification of Real Driving Emissions (RDE) including portable PN measurements are under discussion by the European Commission. RDE test procedure requires stable and low emissions in a wide range of engine operations and durable over a distance of 160 000 km.
Technical Paper

Alternative Particle Number Filtration Performance Test Method

2017-03-28
2017-01-0983
Particle Number (PN) regulation was firstly introduced for European light-duty diesel vehicles back in 2011[1]. Since then, PN regulation has been and is being expanded to heavy-duty diesel vehicles and non-road diesel machineries. PN regulation will also be expanded to China and India around 2020 or later. Diesel Particulate Filter (DPF) is significant factor for the above-mentioned PN regulation. This filter technology is to be continuously evolved for the near future tighter PN regulation. Generally, PN filtration performance test for filter technology development is carried out with chassis dynamometer, engine dynamometer or simulator [2]. This paper describes a simplified and relatively quicker alternative PN filtration performance test method for accelerating filter technology development compared to the current test method.
Technical Paper

Applicability of Diffusion Charger Sensor to Portable Emission Measurement System

2015-09-01
2015-01-1994
Portable emission measurement systems (PEMS) for particle number (PN) counting are under development in Europe, along with the vehicle testing protocol. A PN PEMS was developed by using a non-heated exhaust diluter, and applying a diffusion charger sensor (DCS) as the PN detector which is fitted with diffusion screens in order to selectively remove all particles, including volatiles, below 30 nm. Detection efficiencies of the DCS could be successfully adjusted by the number of diffusion screens installed before it. Equivalent results of the PN PEMS to a conventional system were observed by vehicle tests. However, variations were observed under specific vehicle operating conditions. Also, as part of the same program, a commercially available hand-held condensation particle counter (CPC) was compared with the standard CPC by vehicle tests as one of candidates to PEMS. Differences in PN concentrations were observed depending on the engine conditions
Technical Paper

Correlation between Batch (Bag) and Continuous Sampling for N2O Measurement in Diluted Exhaust from Light-Duty Vehicles

2015-09-01
2015-01-1993
In the engine and vehicle test procedures described in Parts 1065/1066 of Title 40 of the Code of Federal Regulations (CFR), the United States Environmental Protection Agency (US-EPA) allows for the measurement of N2O emissions from sample storage bags, from a continuous dilute stream or a raw exhaust stream. Typically, batch (Bag) sampling has better accuracy and repeatability, but continuous sampling is more efficient in terms of test cell running time and provides test-mode emissions with good correlation to bag measurements. In this study, correlations between bag sampling and continuous dilute exhaust sampling were investigated using a fleet of vehicles with a wide range of N2O emission levels. Very good correlation between these two sampling methods was observed for the majority of tests conducted. In the best cases, differences in average N2O concentration levels measured by these two methods were less than +/− 1%.
Technical Paper

Development of New High Porosity Diesel Particulate Filter for Integrated SCR Technology/Catalyst

2015-09-01
2015-01-2018
Diesel engines are widely used to reduce CO2 emission due to its higher thermal efficiency over gasoline engines. Considering long term CO2 targets, as well as tighter gas emission, especially NOx, diesel engines must become cleaner and more efficient. However, there is a tradeoff between CO2 and NOx and, naturally, engine developers choose lower CO2 because NOx can be reduced by a catalytic converter, such as a SCR catalyst. Lower CO2 engine calibration, unfortunately, leads to lower exhaust gas temperatures, which delays the activation of the catalytic converter. In order to overcome both problems, higher engine out NOx emission and lower exhaust gas temperatures, close-coupled a diesel particulate filter (DPF) system with integration of SCR catalyst technology is preferred. For SCR catalyst activity, it is known that the catalyst loading amount has an influence on NOx performance, so a high SCR catalyst loading will be required.
Journal Article

Development of New High Porosity Diesel Particulate Filter for Integrated SCR Technology/Catalyst

2015-04-14
2015-01-1017
Since the implementation of Euro 6 in September 2014, diesel engines are facing another drastic reduction of NOx emission limits from 180 to only 80 mg/km during NEDC and real driving emissions (RDE) are going to be monitored until limit values are enforced from September 2017. Considering also long term CO2 targets of 95 g/km beyond 2020, diesel engines must become cleaner and more efficient. However, there is a tradeoff between NOx and CO2 and, naturally, engine developers choose lower CO2 because NOx can be reduced by additional devices such as EGR or a catalytic converter. Lower CO2 engine calibration, unfortunately, leads to lower exhaust gas temperatures, which delays the activation of the catalytic converter. In order to overcome both problems, higher NOx engine out emission and lower exhaust gas temperatures, new aftertreatment systems will incorporate close-coupled DeNOx systems.
Book

Engine Emissions Measurement Handbook

2013-11-12
The subject of engine emissions is expected to be at the forefront of environmental regulations and consumers’ concerns for years to come. As technology develops to comply with new and different requirements in various regions of the world, understanding the fundamental principles of how engine emissions occur, and how they can be properly measured, is vitally important. Engine Emissions Measurement Handbook, developed and co-authored by HORIBA Automotive Test Systems team addresses the main aspects of this subject. Written with the technical user in mind, this title is a must-have for those involved in engine development and testing, and environmental researchers focusing on better ways to minimize emissions pollution.
Journal Article

In-Situ Real-Time Fuel Consumption Measurement Using Raw Exhaust Flow Meter and Zirconia AFR Sensor

2013-04-08
2013-01-1058
Fuel efficiency is one of the most important parameters in advanced vehicles. Therefore, the measurement of fuel consumption in-situ and in real-time is obviously demanded in development and evaluation processes of new engines and vehicles. This paper describes a new concept for measuring fuel consumption in real-time, which utilizing raw exhaust gas flow rate and exhaust air-to-fuel ratio (AFR). The AFR is defined as the mass ratio of air and fuel supplied to the engine, and the mass flow rate of exhaust gas can be regarded as the summation of the mass flow rate of air and fuel. This means the fuel consumption can be calculated from exhaust flow rate and AFR. To realize in-situ, real-time measurement, we used an ultrasonic exhaust flow meter which can measure a wide flow range accurately with no pressure loss, and a fast response zirconia sensor which can be installed onto the exhaust pipe directly without any sampling system.
Technical Paper

Influence of Material Properties and Pore Design Parameters on Non-Catalyzed Diesel Particulate Filter Performance with Ash Accumulation

2012-09-10
2012-01-1728
Diesel particulate filters (DPF) are a common component in emission-control systems of modern clean diesel vehicles. Several DPF materials have been used in various applications. Silicone Carbide (SiC) is common for passenger vehicles because of its thermal robustness derived from its high specific gravity and heat conductivity. However, a segmented structure is required to relieve thermal stress due to SiC's higher coefficient of thermal expansion (CTE). Cordierite (Cd) is a popular material for heavy-duty vehicles. Cordierite which has less mass per given volume, exhibits superior light-off performance, and is also adequate for use in larger monolith structures, due to its lower CTE. SiC and cordierite are recognized as the most prevalent DPF materials since the 2000's. The DPF traps not only combustible particles (soot) but also incombustible ash. Ash accumulates in the DPF and remains in the filter until being physically removed.
Technical Paper

Transient Exhaust Gas Recirculation Ratio Measurement Utilizing Heated NDIR Method

2012-04-16
2012-01-0886
Most of the recent clean diesel engines are equipped with an exhaust gas recirculation (EGR) technology in order to meet the strict criteria of NOx and particulate matter (PM) as required in the current emission regulations. More attention to strict EGR control is becoming required. Accurate and fast transient EGR ratio operation is becoming very critical in the field of the emission control. The EGR ratio is typically monitored by CO₂ trace method, in which CO₂ emitted from engine, is utilized as a tracer gas. The EGR ratio can be obtained from CO₂ concentration measured at engine intake and engine out at the same time. In this study, authors have developed a new EGR analyzer consisting of two CO₂ detectors, to achieve required performance for transient measurement, i.e., short delay time and quick response, negligible difference between two CO₂ detectors, and capability of wet measurement.
X