Refine Your Search

Search Results

Viewing 1 to 3 of 3
Journal Article

Development of a Synthetic Diesel Exhaust

2008-04-14
2008-01-0067
A two-phase study was performed to establish a standard diesel exhaust composition which could be used in the future development of light-duty diesel exhaust aftertreatment. In the first phase, a literature review created a database of diesel engine-out emissions. The database consisted chiefly of data from heavy-duty diesel engines; therefore, the need for an emission testing program for light- and medium-duty engines was identified. A second phase was conducted to provide additional light-duty vehicle emissions data from current technology vehicles. Engine-out diesel exhaust from four 2004 model light-duty vehicles with a variety of engine displacements was collected and analyzed. Each vehicle was evaluated using five steady-state engine operating conditions and two transient test cycles (the Federal Test Procedure and the US06). Regulated emissions were measured along with speciation of both volatile and semi-volatile components of the hydrocarbons.
Technical Paper

Developmental Fuels Emissions Evaluation

2005-10-24
2005-01-3704
Emissions characterization of three, small off-road engines of less than 19 kW power rating operating on two developmental fuels and one reference fuel was performed. The two fuels were formulated to remove benzene completely, curtail sulfur, and in one blend, include a substantial proportion of ethyl tert-butyl ether (ETBE). The engines selected included one side-valve four-stroke engine, one overhead valve four-stroke engine and one handheld two-stroke engine. The engines were maintained in stock condition. Exhaust emissions from operation with the two developmental fuels were compared to those from operation with light-duty certification-grade gasoline. California Air Resources Board (CARB) Small Off-Road Engine (SORE) emissions test methods and test cycles were used to test the engines. Duplicate tests were performed on each engine using dilute sampling procedures. Hydrocarbon speciation was performed on one replicate with each fuel.
Technical Paper

Regulated and Unregulated Exhaust Emissions Comparison for Three Tier II Non-Road Diesel Engines Operating on Ethanol-Diesel Blends

2005-05-11
2005-01-2193
Regulated and unregulated emissions (individual hydrocarbons, ethanol, aldehydes and ketones, polynuclear aromatic hydrocarbons (PAH), nitro-PAH, and soluble organic fraction of particulate matter) were characterized in engines utilizing duplicate ISO 8178-C1 eight-mode tests and FTP smoke tests. Certification No. 2 diesel (400 ppm sulfur) and three ethanol/diesel blends, containing 7.7 percent, 10 percent, and 15 percent ethanol, respectively, were used. The three, Tier II, off-road engines were 6.8-L, 8.1-L, and 12.5-L in displacement and each had differing fuel injection system designs. It was found that smoke and particulate matter emissions decreased with increasing ethanol content. Changes to the emissions of carbon monoxide and oxides of nitrogen varied with engine design, with some increases and some decreases. As expected, increasing ethanol concentration led to higher emissions of acetaldehyde (increases ranging from 27 to 139 percent).
X