Refine Your Search

Topic

Search Results

Technical Paper

Hierarchical Control Strategy for Active Suspension Equipped with an Electromagnetic Actuator

2023-12-31
2023-01-7077
Electromagnetic suspension systems have increasingly gained widespread attention due to their superiority in improving ride comfort while providing fast response, excellent controllability and high mechanical efficiency, but their applications are limited due to the accuracy of the underlying control actuation tracking. For addressing this problem, this study presents a novel hierarchical control strategy for an electromagnetic active suspension (EMAS) system equipped with an electromagnetic actuator (EMA) structure. The structure of the EMA device and the working principle of the motion conversion model are introduced in detail first, and the motion conversion equation is derived based on the force-torque relationship. Based on this, a linear quadratic regulator (LQR) control method is proposed to be applied to a half-vehicle suspension system to improve the vibration isolation performance of the vehicle and ensure the ride comfort.
Technical Paper

Integrated Decision-Making and Planning Method for Autonomous Vehicles Based on an Improved Driving Risk Field

2023-12-31
2023-01-7112
The driving risk field model offers a feasible approach for assessing driving risks and planning safe trajectory in complex traffic scenarios. However, the conventional risk field fails to account for the vehicle size and acceleration, results in the same trajectories are generated when facing different vehicle types and unable to make safe decisions in emergency situations. Therefore, this paper firstly introduces the acceleration and vehicle size of surrounding vehicles for improving the driving risk model. Then, an integrated decision-making and planning model is proposed based on the combination of the novelty risk field and model predictive control (MPC), in which driving risk and vehicle dynamics constraints are taken into consideration. Finally, the multiple driving scenarios are designed and analyzed for validate the proposed model.
Technical Paper

Research on Regenerative Braking Control Strategy under High Charge State Using Prescribed Performance Prediction Control

2022-10-28
2022-01-7041
To reduce the energy consumption level of electric vehicles, the working range of the regenerative braking system will gradually expand to the high state of charge of the battery. The time delay in the control signal transmission path of the high state of charge regenerative braking control process will affect the regenerative braking. At the same time, regenerative braking under a high state of charge puts forward higher requirements for the control accuracy of regenerative current. In the research of this paper, the motor model, battery model, and vehicle dynamics model are firstly established by using MATLAB/Simulink, and the dynamic relationship between regenerative current and regenerative braking torque is analyzed at the same time. Considering the system time delay, this paper proposes a high-charge regenerative braking control strategy (SPPC) that combines Smith prediction and prescribed performance control.
Technical Paper

Numerical Simulation and Optimization for Combustion of an Opposed Piston Two-Stroke Engine for Unmanned Aerial Vehicle (UAV)

2020-04-14
2020-01-0782
An opposed piston two-stroke engine is more suitable for use in an unmanned aerial vehicle because of its small size, excellent self-balancing, stable operation, and low noise. Consequently, in this study, based on experimental data for a prototype opposed piston two-stroke engine, numerical simulation models were established using GT-POWER for 1D simulation and AVL-FIRE for 3D CFD simulation. The mesh grid and solver parameters for the numerical model of the CFD simulation were determined to guarantee the accuracy of the numerical simulation, before studying and optimizing the ventilation efficiency of the engine with different dip angles. Furthermore, the fuel spray and combustion were analyzed and optimized in details.
Technical Paper

Toward High Automatic Driving by a Dynamic Optimal Trajectory Planning Method Based on High-Order Polynomials

2020-04-14
2020-01-0106
This paper intends to present a novel optimal trajectory planning method for obstacle avoidance on highways. Firstly, a mapping from the road Cartesian coordinate system to the road Frenet-based coordinate system is built, and the path lateral offset in the road Frenet-based coordinate system is represented by a function of quintic polynomial respecting the traveled distance along the road centerline. With different terminal conditions regarding its position, heading and curvature of the endpoint, and together with initial conditions of the starting point, the path planner generates a bunch of candidate paths via solving nonlinear equation sets numerically. A path selecting mechanism is further built which considers a normalized weighted sum of the path length, curvature, consistency with the previous path, as well as the road hazard risk.
Technical Paper

Multi-Objective Discrete Robust Optimization for Pedestrian Head Protection

2020-04-14
2020-01-0934
Optimization design for vehicle front-end structures has proven rather essential and been extensively used to improve the vehicle performance. Nevertheless, the front-end structure needs to meet the requirement of both pedestrian safety and structural stiffness which are somewhat contradicting to each other. Furthermore, an optimal design could become less meaningful or even unacceptable when some uncertainties present. In the paper, a multi-objective discrete robust optimization (MODRO) algorithm is used to minimize the injury of head and maximize the structural stiffness involving uncertainties. MODRO algorithm is achieved by coupling grey relational analysis (GRA) and principal component analysis (PCA) with Taguchi method. The optimized result shows that the MODRO algorithm improved performance of pedestrian head injury and robustness of the vehicle front-end structure.
Journal Article

Optimal Cooperative Path Planning Considering Driving Intention for Shared Control

2020-04-14
2020-01-0111
This paper presents an optimal cooperative path planning method considering driver’s driving intention for shared control to address target path conflicts during the driver-automation interaction by using the convex optimization technique based on the natural cubic spline. The optimal path criteria (e.g. the optimal curvature, the optimal heading angle) are formulated as quadratic forms using the natural cubic spline, and the initial cooperative path profiles of the cooperative path in the Frenet-based coordinate system are induced by considering the driver’s lane-changing intention recognized by the Support Vector Machine (SVM) method. Then, the optimal cooperative path could be obtained by the convex optimization techniques. The noncooperative game theory is adopted to model the driver-automation interaction in this shared control framework, where the Nash equilibrium solution is derived by the model predictive control (MPC) approach.
Technical Paper

A Novel Dual Nonlinear Observer for Vehicle System Roll Behavior with Lateral and Vertical Coupling

2019-04-02
2019-01-0432
The study of vehicle coupling state estimation accuracy especially in observer-based vehicle chassis control for improving road handling and ride comfort is a challenging task for vehicle industry under various driving conditions. Due to a large amount of life safety arising from vehicle roll behavior, how to precisely acquire vehicle roll state and rapidly provide for the vehicle control system are of great concern. Simultaneously, uncertainty is unavoidable for various aspects of a vehicle system, e.g., varying sprung mass, moment of inertia and position of the center of gravity. To deal with the above issues, a novel dual observer approach, which combines adaptive Unscented Kalman Filter (AUKF) and Takagi-Sugeno (T-S), is proposed in this paper. A full-car nonlinear model is first established to describe vehicle lateral and vertical coupling roll behavior under various road excitation.
Technical Paper

Calibration and Stitching Methods of Around View Monitor System of Articulated Multi-Carriage Road Vehicle for Intelligent Transportation

2019-04-02
2019-01-0873
The around view monitor (AVM) system for the long-body road vehicle with multiple articulated carriages usually suffers from the incomplete distortion rectification of fisheye cameras and the irregular image stitching area caused by the change of relative position of the cameras on different carriages while the vehicle is in motion. In response to these problems, a set of calibration and stitching methods of AVM are proposed. First, a radial-distortion-based rectification method is adopted and improved. This method establishes two lost functions and solves the model parameters with the two-step optimization method. Then, AVM system calibration is conducted, and the perspective transformation matrix is calculated. After that, a static basic look-up table is generated based on the distortion rectification model and perspective transformation matrix.
Technical Paper

Response Decoupling Method in Mount Design with Emphasis on Transient Load Conditions

2019-01-18
2018-01-5046
This research examined the focused design, elastic design, energy decoupling, and torque roll axis (TRA) decoupling methods for mount optimization design. Requiring some assumptions, these methods are invalid for some load conditions and constraints. The linearity assumption is advantageous and simplifies both design and optimization analysis, facilitating engineering applications. However, the linearity is rarely seen in real-world applications, and there is no practical method to directly measure the reaction forces in the three locally orthogonal directions, preventing validation of existing methods by experimental results. For nonlinear system identification, there are additional challenges such as unobservable internal variables and the uncertainty of measured data.
Technical Paper

Fuzzy Observer for Nonlinear Vehicle System Roll Behavior with Coupled Lateral and Vertical Dynamics

2018-04-03
2018-01-0559
The study of vehicle state estimation performance especially on the aspect of observer-based control for improving vehicle ride comfort and road handling is a challenging task for vehicle industry. Since vehicle roll behavior with various road excitations act an important part of driving safety, how to accurately obtain vehicle state under various driving scenes are of great concern. However, previous researches seldom consider coupling relation between vehicle vertical and lateral response with steering input under various road excitation. To address this issue, comprehension analyses on vehicle roll state estimation with coupled input are present in this paper. A full-car nonlinear Takagi-Sugeno (T-S) fuzzy model is first created to describe vehicle lateral and vertical coupling dynamics.
Technical Paper

Lateral Dynamics and Suspension Tuning for a Two-Axle Bus Fitted with Roll-Resistant Hydraulically Interconnected Suspension

2018-04-03
2018-01-0831
In this paper, a new roll-plane hydraulically interconnected suspension (HIS) system is proposed to enhance the roll and lateral dynamics of a two-axle bus. It is well-known that the suspension tuning is of great importance in the design process and has also been explored in a number of studies, while only minimal efforts have been made for suspension tuning for the newly proposed HIS system especially considering lateral stability. This study aims to explore lateral dynamics and suspension tuning of a two-axle bus with HIS system, which could also provide valuable information for roll dynamics analysis. Based on a ten-DOFs lumped-mass full-car model of a bus either integrating transient mechanical-hydraulic model for HIS or the traditional suspension components, three newly promoted parameters of HIS system are defined and analyzed-namely the total roll stiffness (TRS), roll stiffness distribution ratio (RSDR) and roll-plane damping (RPD).
Technical Paper

Dynamic Characteristics Analysis of an Ambulance with Hydraulically Interconnected Suspension System

2018-04-03
2018-01-0815
The vibration and instability experienced in an ambulance can lead to secondary injury to a patient and discourage a paramedic from emergency care. This paper presents a hydraulically interconnected suspension (HIS) system which can achieve enhanced cooperative control of roll, pitch and bounce motion modes to improve the ambulance's ride comfort and handling performance. A lumped-mass model integrated with a mechanical and hydraulic coupled system is developed by using free-body diagram and transfer matrix methods. The mechanical-fluid boundary condition in the double-acting cylinders is modelled as an external force on the mechanical system and a moving boundary on the fluid system. A special modal analysis method is employed to reveal the vibration characteristics of the ambulance with the HIS.
Technical Paper

Design and Optimization of Injector Based on Voice Coil Motor

2017-10-08
2017-01-2301
The electronic control of direct injection fuel system, which could improve engine fuel efficiency, dynamics and engine emission performance through good atomization, precise control of fuel injection time and improvement of fuel-gas mixture, is the key technology to achieve the stratified combustion and lean combustion. In this paper, a direct injection injector that based on voice coil motor was designed aiming at the technical characteristics of one 800cc two-stroke cam-less engine. Prior to a one - dimensional simulation model of injector was established by AMEsim and the maximal fuel injection demand was met via the optimization of the main parameters of the injector, the structure of the voice coil motor was optimized by magnetic equivalent circuit method. After that, the maximal flow rate of the injector was verified by the injector bench test while the atomization characteristic of the injector was verified by using a high-speed camera.
Technical Paper

Investigation of the Influence of an Hydraulically Interconnected Suspension (HIS) on Steady-State Cornering

2017-03-28
2017-01-0430
This paper introduces a vehicle model in CarSim, and replaces a portion of its standard suspension system with an HIS model built in an external software to implement co-simulations. The maneuver we employ to characterize the HIS vehicle is a constant radius method, i.e. observing the vehicle’s steering wheel angle by fixing its cornering radius and gradually increasing its longitudinal speed. The principles of the influence of HIS systems on cornering mainly focus on two factors: lateral load transfer and roll steer effect. The concept of the front lateral load transfer occupancy ratio (FLTOR) is proposed to evaluate the proportions of lateral load transfer at front and rear axles. The relationship between toe and suspension compression is dismissed firstly to demonstrate the effects of lateral load transfer and then introduced to illustrate the effects of roll motion on cornering.
Technical Paper

Calculations and Test Measurements of In-Cylinder Combustion Velocity of Hydrogen - Air Mixtures Considering the Effect of Flame Instability

2017-03-28
2017-01-0780
The combustion characteristics of hydrogen-air mixtures have significance significant impact on the performance and control of hydrogen-fueled internal combustion engines and the combustion velocity is an important parameter in characterizing the combustion characteristics of the mixture. A four-cylinder hydrogen internal combustion engine was used to study hydrogen combustion; the combustion characteristics of a hydrogen mixture were experimentally studied in a constant-volume incendiary bomb, and the turbulent premixed combustion characteristics of hydrogen were calculated and analyzed. Turbulent hydrogen combustion comes under the folded laminar flame model. The turbulent combustion velocity in lean hydrogen combustion is related not only to the turbulent velocity and the laminar burning velocity, but also to the additional turbulence term caused by the instability of the flame.
Journal Article

A Semi-Detailed Chemical Kinetic Mechanism of Acetone-Butanol-Ethanol (ABE) and Diesel Blends for Combustion Simulations

2016-04-05
2016-01-0583
With the development of advanced ABE fermentation technology, the volumetric percentage of acetone, butanol and ethanol in the bio-solvents can be precisely controlled. To seek for an optimized volumetric ratio for ABE-diesel blends, the previous work in our team has experimentally investigated and analyzed the combustion features of ABE-diesel blends with different volumetric ratio (A: B: E: 6:3:1; 3:6:1; 0:10:0, vol. %) in a constant volume chamber. It was found that an increased amount of acetone would lead to a significant advancement of combustion phasing whereas butanol would compensate the advancing effect. Both spray dynamic and chemistry reaction dynamic are of great importance in explaining the unique combustion characteristic of ABE-diesel blend. In this study, a semi-detailed chemical mechanism is constructed and used to model ABE-diesel spray combustion in a constant volume chamber.
Technical Paper

Reliability Optimal Design of B-pillar in Side Impact

2016-04-05
2016-01-1523
The traditional deterministic optimal design is mostly based on meeting regulatory requirements specified in impact standards, without taking the randomness of the impact velocity and angle at the real world situation into consideration. This often leads to the optimization results that converge to the boundary constraints, thus cannot meet the reliability requirements of the product design. Structure members of B-pillar (e.g. inner panel, outer panel, and the reinforcing plate) play a major role in the side impact safety performance. This paper dealt with optimization of B-pillar by considering its dimensions and materials as the design variables, and the impact velocity and angle from real-world traffic accident conditions as the random variable inputs. Using a combination of design of experiment, response surface models, reliability theory and the reliability of design optimization method, a B-pillar was constructed based on the product quality engineering.
Technical Paper

G-G Diagram Generation Based on Phase Plane Method and Experimental Validation for FSAE Race Car

2016-04-05
2016-01-0174
In order to discuss the limit handling performance of a FSAE race car, a method to generate the G-G diagram was proposed based on phase plane concept. The simulated G-G diagram was validated by experiments with an electric FSAE race car. In section 1, a nonlinear 7 DOFs dynamic model of a certain electric FSAE race car was built. The tire mechanical properties were described by Magic Formula, and the tire test data was provided by FSAE TTC. In section 2, firstly the steady-state yaw rate response was discussed in different vehicle speed and lateral acceleration based on the simulations. Then the method to generate the G-G diagram based on phase plane concept was proposed, and the simulated G-G diagram of a certain FSAE race car was obtained. In section 3, the testbed FSAE race car was described, including the important apparatuses used in the experiments. Based on the race track experiment, the G-G diagram of the race car was obtained.
Journal Article

Vehicle Parameter Estimation Based on Full-Car Dynamic Testing

2015-04-14
2015-01-0636
Effectively obtaining physical parameters for vehicle dynamic model is the key to successfully performing any computer-based dynamic analysis, control strategy development or optimization. For a spring and lump mass vehicle model, which is a type of vehicle model widely used, its physical parameters include sprung mass, unsprung mass, inertial properties of the sprung mass, stiffness and damping coefficient of suspension and tire, etc. To minimize error, the paper proposes a method to estimate these parameters from vehicle modal parameters which are in turn obtained through full-car dynamic testing. To verify its effectiveness, a visual vehicle with a set of given parameters, build in the Adams(Automatic Dynamic Analysis of Mechanical Systems)/Car environment, is used to perform the dynamic testing and provide the testing data for the parameter estimation.
X