Refine Your Search

Search Results

Viewing 1 to 15 of 15
Technical Paper

An Application of Acoustic Metamaterial for Reducing Noise Transfer through Car Body Panels

2018-06-13
2018-01-1566
This paper presents the design of an additional structure based on acoustic metamaterial (AMM) for the reduction of vibro-acoustic transfer function of a car body panel. As vehicles are lighter and those engine forces are bigger recently, it has become more difficult to reduce the vibration and noise transfer through body panels by using just conventional NVH countermeasures. In this research, a new approach based on AMM is tried to reduce the vibration and noise transfer of a firewall panel. First, a unit cell structure based on the locally resonant metamaterial is devised and the unit cell’s design variables are studied to increase the wave attenuation in the stop band of a dispersion curve, where the Floquet-Bloch theorem is used to estimate the dispersion curve of a two-dimensional periodic structure. Also, the vibration transfer and the vibro-acoustic transfer are predicted in a FE model of meta-plate which is composed of a periodic system of the devised unit cell.
Technical Paper

Bio-Based Composites and Their Applications for Auto Interior Parts

2016-04-05
2016-01-0512
Polylactide (PLA), which is one of the most important biocompatible polyesters that are derived from annually renewable biomass such as corn and sugar beets, has attracted much attention for automotive parts application. The manufacturing method of PLA is the ring-opening polymerization of the dimeric cyclic ester of lactic acid, lactide. For the PLA composites including stereocomplexed with L- and D-PLA, we developed the unit processes such as fermentation, separation, lactide conversion, and polymerization. We investigated D-lactic acid fermentation with a view to obtaining the strains capable of producing D-lactic acid, and through catalyst screening test for polycondensation and depolymerization reactions, we got a new method which shortens the whole reaction time of lactide synthesis step. Poly(d-lactide) is obtained from the ring-opening polymerization of d-lactide. Also we investigated several catalysts and polymerization conditions.
Technical Paper

Material NVH Convergence Technology for a Plastic Intercooler Pipe

2014-04-01
2014-01-1040
The main contribution of this paper is to employ a sound and vibration theory in order to develop a light and cost effective plastic intercooler pipe. The intercooler pipe was composed of two rubber hoses and one aluminum pipe mounted between an ACV (Air Control Valve) and an intercooler outlet. The engineering design concept is to incorporate low-vibration type bellows and an impedance-mismatched center pipe, which replaces the rubber hoses and aluminum pipe respectively. The bellows were designed to adapt powertrain movement for high vibration transmission loss to the intercooler outlet. Also, the impedance-mismatched center pipe was implemented to increase reflected wave by using relatively higher modulus than bellows part and applying a SeCo (Sequential Coextrusion) processing method.
Technical Paper

Development of a Lightweight CFRP Coil Spring

2014-04-01
2014-01-1057
Today, all manufacturers of vehicles are up for the challenge to abide in automobile emission control laws. Weight reduction is one of the best solutions to reduce both fuel consumption and emissions. The most effective method for the said idea is to have lightweight materials to some parts of vehicle using the FRP(Fiber Reinforced Plastics). In order to obtain good mechanical properties of FRP, continuous fiber should be used. But it is difficult to design and manufacture FRP parts using continuous fiber because of material properties and molding process. In this paper, it is used CF(carbon Fiber) and Epoxy to make a composite material. Properties of this CFRP can be predicted through analysis. Tests and simulations of specimen are performed as every step progresses for correlation. A spring can be designed to meet all requirements for specific performance. The CFRP spring is made by new devices and methods and can be applied to vehicle for practical use.
Technical Paper

Effects of Composite Sandwich Endplates on the Cold Start Characteristics of PEMFC

2010-04-12
2010-01-1091
End-plates are highly stiff plates that hold together the components composing a fuel cell stack, i.e. Membrane Electrode Assemblies (MEAs), Gas Distribution Layers (GDLs) and bipolar plates, offering sufficient contact pressure between them. The proper contact pressure is required not only to improve energy efficiency of a stack by decreasing ohmic loss but also to prevent leakage of fluids such as hydrogen, air, or coolant. When a fuel cell starts in cold environment, heat generated in a fuel cell stack as a result of electrochemical reactions should not be used much to increase the temperature of endplates but to melt ice inside the stack to prevent ice-blocking and to increase the temperature near the three-phase-boundary on MEAs. However, to satisfy the high stiffness required, massive metallic endplates have been used despite their inferior thermal characteristics: high thermal conductivity and large thermal inertia.
Technical Paper

Study on the Long-Term Aging-Resistance of Anti-Vibration Rubber in the Vehicle

2002-03-04
2002-01-0725
Anti-vibration rubbers in vehicle play an important role in restricting vibration generated from engine and road. But, degradation occurs when rubber is exposed for a long time to heat, light, ozone and etc. These make the rubber hard and lose its initial properties. The rubber change makes N.V.H performance of vehicle the worse, and gives the discomfort to the passengers. To reduce the change of rubber properties, sulfur-donor and heat stable cross-linking co-agent vulcanization system have been introduced in the developed natural rubber compounds of the anti-vibration rubber parts. These lead to a reduction of degradation of material properties, maintenance of the initial properties and increase of the fatigue life.
Technical Paper

Development of Composite Body Panels for a Lightweight Vehicle

2001-03-05
2001-01-0102
Recently weight reduction is increasingly needed in automotive industry to improve fuel efficiency and to meet a CO2 emission requirement. In this paper, we prepared composite body panels for the lightweight vehicle based on a small passenger car. Fender, roof, door, side outer panel, and tailgate are made from hand layup using a glass/carbon hybrid reinforcement. Hood is made from low pressure sheet molding compound (SMC) to investigate feasibility of mass production. Both hand layup and low pressure SMC materials are newly developed and their physical properties are examined. CAE simulation was done for strength analysis and optimization of thickness for the body panels.
Technical Paper

Development of primerless paintable thermoplastic polyolefin with high impact strength for vehicle interior parts

2000-06-12
2000-05-0151
A new thermoplastic polyolefin with primerless adhesion to paint has been developed by polypropylene (PP) with α-olefin copolymers, mineral fillers and some additives. It can substantially reduce costs and environmental problems by eliminating primer treating operations, traditionally treated from trichloroethene (TCE). This new material exhibits unique solid-state texture that rubbery polymer component are typically dispersed in lamellar structure matrix. Versus conventional PP or thermoplastic olefin (TPO), it provides excellent brittle-ductile (BD) transition as well as paintability. Also it is expected to have a significant impact on interior parts as requirements for material change to an emphasis on light weight, lower cost, more efficient finishing.
Technical Paper

Low-pressure molding compound hood panel for a passenger car

2000-06-12
2000-05-0110
Low-pressure molding compound (LPMC) is a new kind of composite material which can be used for automotive body panels. LPMC has similar mechanical properties compared to conventional sheet molding compound (SMC) but excellent moldability due to the different thickening system. In this paper, we prepared LPMC hood prototype for a passenger car using a low-cost tooling. Inner panel and outer panel were made of general-density- and low-density-grade LPMC, respectively, in order to maximize weight reduction maintaining surface quality. Physical properties containing tensile strength, flexural modulus, notched Izod impact strength of those samples were investigated. In addition, CAE simulation was also done for strength analysis of the hood assembly.
Technical Paper

Identification of Forces Transmitted onto Car Body Through Rubber Bushings in Suspension System Under Driving Conditions

1999-05-17
1999-01-1841
This paper presents a study on using rubber bushing as a sensor for the identification of forces transmitted onto the car body. The method starts from the idea that the transmission forces can be related to the deformation of the rubber bushing multiplied by its stiffness. Deformation of the rubber bushing is estimated from relative vibrations across the bushing. Simple theories are presented to deal with modeling of the rubber bushing and processing of the vibration mesurements on the link and car body to identify the transmission forces. Then, validity of the proposed approach is shown by applications to a suspension system under several driving conditions.
Technical Paper

Recycling of Automotive Tail Lamp Assembly

1997-02-24
970417
A new recycled material has been developed by using the scrap of tail lamp assembly, made of poly(methyl methacrylate) (PMMA) for the lens and acrylonitrile-butadiene-styrene terpolymer (ABS) for the housing. Lamp scrap was extruded in a twin-screw extruder, and mechanical properties of the scrap were compared with ABS, PMMA, and an ABS/PMMA (60/40) blend. The recycled material from 100% tail lamp scrap has similar modulus to the 60/40 blend, however, notched Izod impact strength and thermal resistance were lower than that of the blend, probably due to the presence of hot melt adhesive and silver paint. Scrap/virgin polymer mixtures showed improved thermal resistance and impact strength. The effects of composition and type of mixed polymer on mechanical properties were also investigated.
Technical Paper

Mechanical Properties and Fatigue Crack Propagation Behavior of Hybrid Metal Matrix Composites

1996-02-01
960577
The objective of this study is to investigate mechanical properties and fatigue crack propagation behavior in hybrid metal matrix composites by squeeze infiltration method (15% Al2O3 + SiCw/6061Al). The mechanical properties of Al2O3+SiCw/Al composites including tensile strength, yield strength, Young's modulus, were improved compared with those of unreinforced alloy and Al203/Al composites. The hybrid composites were more ductile than Al2O3/Al composites. Fatigue crack propagation rates of both Al2O3/Al and Al2O3+SiCw/Al composites showed a similar behavior in region II. Their propagation rates were higher in entire ▵K region compared with that of 6061 Al alloy. From the crack path morphology, fatigue cracks propagated linearly and smoothly in 6061 Al alloy. However, in the metal matrix composites cracks tend to avoid the reinforcements promoting crack deflection. It was observed that crack deflection enhanced crack closure due to wedging phenomenon.
Technical Paper

The Development and Performance Simulation of Polychloroprene High Temperature Bush Type Engine Mount

1994-03-01
940888
In recent years, high performance engines and the reduction in engine room due to aerodynamic styling has caused increases in engine room temperature. Because of this increasing temperature, the conventional natural rubber engine mount is now at the marginal point on its performance and durability. Several heat resistant materials have been considered for engine mount applications because of this reason. Polychloroprene rubber could be a strong candidate for engine mount application due to its balance of heat resistance, dynamic properties, and fatigue life. This paper will discuss the development of the technology, property characteristics and part performance simulations on the HYUNDAI BUSH TYPE COMPLEX ENGINE MOUNT (for 2.0L DOHC ENGINE). This type of mount requires higher creep resistance and fatigue life than those of other designs, such as block or simple shear type mounts. Early evaluations of polychloroprene mounts have shown some deficiencies in creep resistance.
Technical Paper

The Wettability of Silicon Carbide by Liquid Pure Aluminum and Aluminum Alloys

1994-03-01
940808
There have been strong moves in recent years to introduce the metal matrix composites concept into higher volume applications, notably the automotive field where large volume production and lower material costs are required. The wettability between reinforcing materials and base material is one of important factors for the strength of composites and its manufacture. The main objective of this paper is to establish a basic understanding of wetting phenomena in SiC/liquid aluminum and aluminum alloy systems. In the present paper, results from the sessile drop method are reported for the effects on the wetting angle, θ, of free silicon in the silicon carbide substrate and of alloying additions of silicon, copper or magnesium to the aluminum drop for the temperature range 700-900 or 1400°C in the titanium-gettered vacuum (1.3 x 10-2 / 1.3 x 10-3 Pa).
Technical Paper

Characterization of High Temperature Properties in Al Matrix Composite Fabricated by the Low Pressure Squeeze Infiltration Process

1994-03-01
940809
Al matrix composites containing alumina (Al2O3) fibers are fabricated by the low pressure (25MPa) squeeze infiltration process which is suitable for the low cost mass production. Mechanical properties at room temperature as well as elevated temperatures (250°C, 350°C) are improved due to the presence of reinforcements. Upto 350°C, composites maintain a reasonable strength, which is much better than strength of the conventional Al alloy. Composites have equivalent wear rates to those of Ni - resist cast iron. Wear behavior is changed with the sliding speed. At low sliding speed, wear proceeds by the excessive failure of matrix and fiber, whilst, at higher sliding speed, matrix fracture near fiber plays a major role in wear. Wear resistance of 125°C is inferior to that of room temperature due to the reduction of mechanical properties followed by matrix softening and poor bonding.
X