Refine Your Search

Topic

Search Results

Technical Paper

Adaptive Inverse Control of Vibration Exciter for Tracking Target Acceleration of a Car Subsystem

2024-06-12
2024-01-2920
This research aims to develop an inverse control method capable of adaptively simulating dynamic models of car subsystems in the rig-test condition. Accurate simulation of the actual vibration conditions is one of the most crucial factors in realizing reliable rig-test platforms. However, most typical rig tests are conducted under simple random or harmonic sweep conditions. Moreover, the conventional test methods are hard to directly adapt to the actual vibration conditions when switching the dynamic characteristics of the subsystem in the rig test. In the present work, we developed an inverse controller to adaptively control the vibration exciter referring to the target vibration signal. An adaptive LMS filter, employed for the control algorithm, updated the filter weights in real time by referring to the target and the measured acceleration signals.
Technical Paper

A Novel Vehicle-to-Vehicle Fast Charging Control System Utilizing Motor and Inverter in EV

2022-03-29
2022-01-0170
As electric vehicles become more widespread, such vehicles may be subject to “range anxiety” due to the risk of discharging during driving or the discharging when left unused for a long period. Accordingly, a vehicle equipped with a mobile charger that can provide a charge in an emergency. The vehicle with the mobile charger is usually composed of a large capacity battery, a power converter in a small truck. However, the large capacity battery and the power converter are disadvantageous in that they are large in size and expensive and should be produced as a special vehicle. In this paper, we propose a method to solve the problem using an internal EV system without requiring an additional power generation, battery and a charging-and-discharging device. The method is a novel Vehicle-to-Vehicle (V2V) fast charging control system utilizing motor and inverter in EV.
Technical Paper

Development of the Active Sound Generation Technology Using Motor Driven Power Steering System

2020-09-30
2020-01-1536
As the original engine sound is usually not enough to satisfy the driver’s desire for a sporty and fascinating sound, Active Noise Control (ANC) and Active Sound Design (ASD) have been great technologies in automobiles for a long time. However, these technologies which enhance the sound of vehicles using loud speakers or electromagnetic actuators etc. lead to the increase of cost and weight due to the use of external amplifiers or actuators. This paper presents a new technology for generating a target sound by the active control of a permanent magnet synchronous motor (PMSM) of a mass-production steering system. The existing steering hardware or motor is not changed, but only additional software is added. Firstly, an algorithm of this technology, called Active Sound Generation (ASG), is introduced which is compiled and included in the ECU target code. Then the high frequency noise issue and its countermeasures are presented.
Technical Paper

A Method of the Improvement of Wireless Power Transfer (WPT) System Efficiency, Compatibility, EMI Reduction, and Foreign Object Detection (FOD) for EV Applications

2020-04-14
2020-01-0530
During the charging Electric Vehicle (EV), power transfer occurs in the power electronics of an EV powertrain. Understanding how the Wireless Power Transfer (WPT) occurs would be beneficial for achieving convenient charging method. This paper focuses on improving WPT system pad compatibility, power transfer efficiency, EMI reduction, and Foreign Object Detection (FOD). The choice of convertible WPT pad for circular and DD type coil, improvement of pad compatibility is analyzed in this paper. In addition, several control methods of increasing WPT system efficiency are proposed. Firstly, the effect of Full Bridge - Half Bridge (FB-HB) is introduced, and the influence of a Bridgeless control scheme is discussed. A new, ferrite pad structure is applied to WPT system in order to achieve EMI reduction. Lastly, a new strategy of Foreign Object Detection (FOD) is suggested for WPT system using phase difference and frequency variation detection.
Journal Article

ABC’s of Seat Comfort: A Historical Perspective

2019-04-02
2019-01-0407
Although subjective measurements are critical for qualifying seat comfort in terms of good or bad, objective measurements are the basis for quantifying these differences and ultimately controlling seat comfort performance through engineering design specs, targets, and/or guidelines. Many objective automotive seat comfort tools and techniques used today are based on methods derived in the past. This paper examines the engineering problems and solutions that make these historical influences relevant today. Particular focus is given to design considerations for the A-surface, B-surface, and the compressed surface of the seating system.
Technical Paper

Control of Steer by Wire System for Reference Steering Wheel Torque Tracking and Return-Ability

2018-04-03
2018-01-0566
This paper proposes a torque tracking algorithm via steer by wire to achieve the target steering feel and proposed a modified friction model to obtain return-ability. A three dimensional reference steering wheel torque map is designed using the measurement data of the steering characteristics of the target vehicle at a transition test and a weave test. In order to track the reference steering wheel torque, a sliding mode control is used in the tracking algorithm. In addition, to achieve return-ability, the modified friction model for steer by wire is used instead of the friction model defined in the reference steering wheel torque map. The modified friction model is composed of various models according to the angular velocity. The angular velocity and the angular acceleration used in the control algorithm are estimated using a kalman filter.
Technical Paper

A Research on Brand Sound Positioning and Implementing with Active Sound Design

2017-06-05
2017-01-1754
This paper aims to establish a systematic process of developing a brand driving sound. Firstly, principal factors of a brand sound identity are extracted from factor analysis of many sample cars. As a result, brand sound positioning map is drawn using jury test data. Also, the multiple regression analysis of subjective and objective test results is carried. As a result, the principal factors are expressed by objective test data and brand sound positioning map can be easily updated from the measurement data. In addition, what should be improved for designing a target sound is reviewed. Secondly, various technologies of target sound design are discussed to involve the brand identity and vehicle’s character in driving sound. Also, an efficient tool to implement the target sound with an active sound design (ASD) system in a vehicle is introduced. This tool enables to efficiently design, tune and simulate a target sound for ASD system in a laboratory.
Technical Paper

Development of Integrated Chassis Control for Limit Handling

2016-04-05
2016-01-1638
This paper presents the integrated chassis control(ICC) of four-wheel drive(4WD), electronic stability control(ESC), electronic control suspension(ECS), and active roll stabilizer(ARS) for limit handling. The ICC consists of three layers: 1) a supervisor determines target vehicle states; 2) upper level controller calculates generalized forces; 3) lower level controller, which is contributed in this paper, optimally allocates the generalized force to chassis modules. The lower level controller consists of two integrated parts, 1) longitudinal force control part (4WD/ESC) and 2) vertical force control part (ECS/ARS). The principal concept of both algorithms is optimally utilizing the capability of the each tire by monitoring tire saturation, with tire combined slip. By monitoring tire saturation, 4WD/ESC integrated system minimizes the sum of the tire saturation, and ECS/ARS integrated system minimizes the variance of the tire saturation.
Technical Paper

Virtual NOx sensor for Transient Operation in Light-Duty Diesel Engine

2016-04-05
2016-01-0561
Currently, diesel engine-out exhaust NOx emission level prediction is a major challenge for complying with the stricter emission legislation and for control purpose of the after-treatment system. Most of the NOx prediction research is based on the Zeldovich thermal mechanism, which is reasonable from the physical point of view and for its simplicity. Nevertheless, there are some predictable range limitations, such as low temperature with high EGR rate operating conditions or high temperature with low EGR rates. In the present paper, 3 additional considerations, pilot burned gas mixing before the main injection; major NO formation area; concentration correction, were applied to the previously developed real-time NO estimation model based on in-cylinder pressure and data available from ECU. The model improvement was verified on a 1.6 liter EURO5 diesel engine in both steady and transient operation.
Technical Paper

Development of an Algorithm to Automatically Detect and Distinguish Squeak and Rattle Noises

2015-06-15
2015-01-2258
Squeak and rattle (S&R) noises are undesirable noises caused by friction-induced vibration or impact between surfaces. While several computer programs have been developed to automatically detect and rate S&R events over the years, no reported work has been found that can detect squeak and rattle noises and distinguish them. Because the causes of squeak noises and rattle noises are different, knowing if it is a squeak noise or rattle noise will be very helpful for automotive engineers to choose an appropriate measure to solve the problem. The authors have developed a new algorithm to differentiate squeak noises and rattle noises, and added it to the S&R detection algorithm they had developed previously. The new algorithm utilizes a combination of sound quality metrics, specifically sharpness, roughness, and fluctuation strength.
Journal Article

A Primer on Building a Hardware in the Loop Simulation and Validation for a 6X4 Tractor Trailer Model

2014-04-01
2014-01-0118
This research was to model a 6×4 tractor-trailer rig using TruckSim and simulate severe braking maneuvers with hardware in the loop and software in the loop simulations. For the hardware in the loop simulation (HIL), the tractor model was integrated with a 4s4m anti-lock braking system (ABS) and straight line braking tests were conducted. In developing the model, over 100 vehicle parameters were acquired from a real production tractor and entered into TruckSim. For the HIL simulation, the hardware consisted of a 4s4m ABS braking system with six brake chambers, four modulators, a treadle and an electronic control unit (ECU). A dSPACE simulator was used as the “interface” between the TruckSim computer model and the hardware.
Journal Article

Mode-Dynamic Task Allocation and Scheduling for an Engine Management Real-Time System Using a Multicore Microcontroller

2014-04-01
2014-01-0257
A variety of methodologies to use embedded multicore controllers efficiently has been discussed in the last years. Several assumptions are usually made in the automotive domain, such as static assignment of tasks to the cores. This paper shows an approach for efficient task allocation depending on different system modes. An engine management system (EMS) is used as application example, and the performance improvement compared to static allocation is assessed. The paper is structured as follows: First the control algorithms for the EMS will be classified according to operating modes. The classified algorithms will be allocated to the cores, depending on the operating mode. We identify mode transition points, allowing a reliable switch without neglecting timing requirements. As a next step, it will be shown that a load distribution by mode-dependent task allocation would be better balanced than a static task allocation.
Technical Paper

Modeling and Validation of ABS and RSC Control Algorithms for a 6×4 Tractor and Trailer Models using SIL Simulation

2014-04-01
2014-01-0135
A Software-in-the-Loop (SIL) simulation is presented here wherein control algorithms for the Anti-lock Braking System (ABS) and Roll Stability Control (RSC) system were developed in Simulink. Vehicle dynamics models of a 6×4 cab-over tractor and two trailer combinations were developed in TruckSim and were used for control system design. Model validation was performed by doing various dynamic maneuvers like J-Turn, double lane change, decreasing radius curve, high dynamic steer input and constant radius test with increasing speed and comparing the vehicle responses obtained from TruckSim against field test data. A commercial ESC ECU contains two modules: Roll Stability Control (RSC) and Yaw Stability Control (YSC). In this research, only the RSC has been modeled. The ABS system was developed based on the results obtained from a HIL setup that was developed as a part of this research.
Technical Paper

Design Optimization of Suspension Kinematic and Compliance Characteristics

2014-04-01
2014-01-0394
In the early stage of vehicle development process, it is customary to establish a set of goals for each kinematic and compliance (K&C) characteristic and try to find out design variables such as the location of hard points and bushing stiffness which can achieve these goals. However, since it is very difficult to find out adequate set of design variables which satisfy all the goals, many engineers should rely on their own experiences and intuitions, or repeat trial and error to design a new suspension and improve old one. In this research, we develop a suspension design process by which suspension K&C characteristic targets can be achieved systemically and automatically. For this purpose, design optimization schemes such as design of experiments (DoE) and gradient-based local optimization algorithm are adopted.
Technical Paper

A Study on the Strategy and Implementing Technology for the Development of Luxurious Driving Sound

2014-04-01
2014-01-0035
This paper describes a systematic approach to the development of a luxurious driving sound. In the first step, the luxurious sound is conceptualized through jury test, factor analysis and regression analysis. From the results, the main factors and the correlation equation for the luxurious sound are extracted. Also, customer's preference for the luxurious sound is investigated from the customer clinic. In the second step, three core axes and the detailed indices for luxurious sound are defined and quantified. These core axes are a dynamic sound character, a sound balance and a sound harmony. These core axes are also composed of detailed indices and quantified by guide lines. In the third step, each contribution of the sub-systems for sound quality is identified and the target values and methods for implementing the luxurious sound are suggested. In this process, noise path analysis and the customer's preference in each region are considered.
Technical Paper

A Study of Combustion Control Parameter Optimization in a Diesel Engine Using Cylinder Pressure

2014-04-01
2014-01-1352
In diesel engine development, fuel consumption, emissions and combustion noise have been main development objectives for fuel economy, low emissions and NVH. These main objectives can be achieved with advanced engine technologies. As electronic actuating systems are widely applied on diesel engines, elaborate control is required. This is because the main development targets are greatly affected by engine control parameters but frequently have a trade-off relationship. Therefore, the optimization of combustion control parameters is one of the most challenging tasks for improvement. As an efficient method, the DOE methodology has been used in engine calibration. In order to develop a mathematical model, the input and output values must be measured. Unlike other variables, combustion noise has been continually reported to have better indication method in simplified way. In this paper, advanced noise index from cylinder pressure signal is applied on engine test.
Technical Paper

Ethanol Flex Fuel system with Delphi Heated injector application

2014-04-01
2014-01-1369
After the second worldwide oil crisis, Brazil put in place by 1975 a strategic plan to stimulate the usage of ethanol (from sugar cane), to be mixed to the gasoline or to be sold as 100% ethanol fuel (known as E100). To enable an engine to operate with both gasoline and ethanol (and their mixtures), by 2003 the “Flex Fuel” technology was implemented. By 2012 calendar year, from a total of about 3.8 million vehicles sold in the Brazilian market, 91% offered the “Flex Fuel” technology, and great majority used a gasoline sub-tank to assist on cold starts (typically below 15°C, where more than 85% of ethanol is present in fuel tank). The gasoline sub-tank system suffers from issues such as gasoline deterioration, crash-worthiness and user inconvenience such as bad drivability during engine warm up phase. This paper presents fuel injector technologies capable of rapidly electrically heating the ethanol fuel for the Brazilian transportation market.
Technical Paper

Improved Cyclic Performances of Li-Sulfur Batteries with Sulfone-Based Electrolyte

2014-04-01
2014-01-1844
The effects of electrolyte on the cyclability of Li/S battery were investigated in this work. The electrochemical properties of single component ether solvents and a binary mixture of ether solvents were studied. These ether-based electrolytes have polysulfide shuttle problems which result in severe low Coulombic efficiency. To overcome these issues, sulfone-based solvent which forms a stable passivation film at the anode surface were used. As a result, the proper composition of sulfone-based electrolyte were obtained. Its capacity and reversible capacity retention were improved to 715 mAh/g and 72.6% which were increased by 52.1% and 63.1%, respectively, compared to those of ether-based electrolyte.
Technical Paper

Development of Effective Bicycle Model for Wide Ranges of Vehicle Operations

2014-04-01
2014-01-0841
This paper proposes an effective nonlinear bicycle model including longitudinal, lateral, and yaw motions of a vehicle. This bicycle model uses a simplified piece-wise linear tire model and tire force tuning algorithm to produce closely matching vehicle trajectory compared to real vehicle for wide vehicle operation ranges. A simplified piece-wise tire model that well represents nonlinear tire forces was developed. The key parameters of this model can be chosen from measured tire forces. For the effects of dynamic load transfer due to sharp vehicle maneuvers, a tire force tuning algorithm that dynamically adjusts tire forces of the bicycle model based on measured vehicle lateral acceleration is proposed. Responses of the proposed bicycle model have been compared with commercial vehicle dynamics model (CarSim) through simulation in various vehicle maneuvers (ramp steer, sine-with-dwell).
Journal Article

Validation and Sensitivity Studies for SAE J2601, the Light Duty Vehicle Hydrogen Fueling Standard

2014-04-01
2014-01-1990
The worldwide automotive industry is currently preparing for a market introduction of hydrogen-fueled powertrains. These powertrains in fuel cell electric vehicles (FCEVs) offer many advantages: high efficiency, zero tailpipe emissions, reduced greenhouse gas footprint, and use of domestic and renewable energy sources. To realize these benefits, hydrogen vehicles must be competitive with conventional vehicles with regards to fueling time and vehicle range. A key to maximizing the vehicle's driving range is to ensure that the fueling process achieves a complete fill to the rated Compressed Hydrogen Storage System (CHSS) capacity. An optimal process will safely transfer the maximum amount of hydrogen to the vehicle in the shortest amount of time, while staying within the prescribed pressure, temperature, and density limits. The SAE J2601 light duty vehicle fueling standard has been developed to meet these performance objectives under all practical conditions.
X