Refine Your Search

Topic

Author

Search Results

Technical Paper

AI-based EV Range Prediction with Personalization in the Vast Vehicle Data

2024-04-09
2024-01-2868
It is an important factor in electric vehicles to show customers how much they can drive with the energy of the remaining battery. If the remaining mileage is not accurate, electric vehicle drivers will have no choice but have to feel anxious about the mileage. Additionally, the potential customers have range anxiety when they consider Electric Vehicles. If the remaining mileage to drive is wrong, drivers may not be able to get to the charging station and may not be able to drive because the battery runs out. It is important to show the remaining available driving range exactly for drivers. The previous study proposed an advanced model by predicting the remaining mileage based on actual driving data and based on reflecting the pattern of customers who drive regularly. The Bayesian linear regression model was right model in previous study.
Technical Paper

A Study on the Evaluation of UX of Mid SUV

2024-04-09
2024-01-2460
In recent years, with the advent of the Fourth Industrial Revolution and the COVID-19 pandemic, people's lives worldwide have undergone significant changes. Additionally, the emergence of a new generation of consumers known as the millennial generation has led to a high demand for multipurpose family cars. The perspective is shifting towards choosing premium products that enhance the quality of life and pursue their own happiness and comfort through technology, rather than simply selecting a midsize SUV based on the increase in family size. We aim to meet the needs of these global customers by conducting research and developing various new features that were not previously available in midsize SUVs. In this study, we defined the actual target users for midsize SUVs and established UX concepts by analyzing their characteristics. Based on this, we employed an optimal design approach by analyzing the evaluation results by country for the various features implemented within the vehicle.
Technical Paper

An MBSE Methodology for Cross-Domain Vehicle Performance Development

2024-04-09
2024-01-2499
Even if an optimal design is produced in the mid-to-late stages of development, when the maturity of development is increasing, it is already difficult to accept the proposal between the organizations and functions. In case the optimal proposal is made with a small amount of information in the preceding stage, it will be helpful for mutual decision-making. In addition, if all members have a system and development environment that enables access and utilization of necessary data in a timely manner, it is possible to produce quick results through collaboration. To implement such a system and development environment, “digital modeling" of tangible and intangible assets will be essential and to implement an "integrated IT environment" that can access and utilize digital models. Until now, Hyundai Motor Company has not yet fully established a digital development environment that all researchers can simultaneously utilize during the concept development stage.
Technical Paper

Development and Simulation Validation of a Wheel/Tire Selective-Matching Algorithm Considering an Error Function of Wheel Runout Measuring Equipment

2024-04-09
2024-01-2651
In this study, a novel selective matching logic for a wheel/tire is proposed, to decrease the vehicle driving vibration caused by wheel/tire non-uniformity. The new logic was validated through matching simulation/in-line matching evaluation. A theoretical radial force variation model was established by considering the theoretical model of the existing references and the wheel/tire assembly mechanism. The model was validated with ZF’s high-speed uniformity equipment, which is standard in the tire industry. The validity of the new matching logic was verified through matching simulation and mass production in-line evaluation. In conclusion, the novel logic presented herein was demonstrated to effectively decrease the radial force variation caused by the wheel/tire.
Technical Paper

Development of Classification of Customer Complaints Using Deep Learning

2024-04-09
2024-01-2789
In recent years, the automotive industry has been making efforts to develop vehicles that satisfy customers’ emotions rather than malfunctions by improving the durability of vehicles. The durability and reliability of vehicles sold in the U.S. can be determined through the VDS (Vehicle Dependability Study) published by JD Power. The VDS is index which is the number of complaints per 100 units released by J.D. POWER in every year. It investigates customers who have used it for 3 years after purchasing a new car and consists of 177 specific problems grouped into 8 categories such as PT, ACEN, FCD, Exterior. The VDS-4 has been strengthened since the introduction of the new evaluation system VDS-5 in 2015. In order to improve the VDS index, it is important to gather various customer complaints such as internet data, warranty data, Enprecis data and clarify the problem and cause. Enprecis data is survey of customer complaints by on-line in terms of VDS.
Technical Paper

A Study on the Improvement of Driver's Inconvenience to Ensure Driving Stability in Bad Weather Conditions

2023-04-11
2023-01-0651
Bad weather conditions such as torrential rain, heavy snow, and thick fog frequently occur worldwide. Vehicle accidents in such bad weather conditions account for a significant portion of all vehicle accidents, and the level of damage is relatively severe compared to other accidents that occur in clear weather. This paper analyzes the driver's driving stability in bad weather conditions, which has such a significant meaning, in various ways through experiments on the inconvenience experienced by the driver. In this study, three levels of bad weather conditions were implemented in a driving simulator environment to evaluate driver inconvenience for six activities. Through driving experiment, quantitative bio-signals and vehicle signals were analyzed in each weather condition. The SD survey was used to assess the driver's inconvenience level for activities performed while driving and analyze the ranking of inconvenience.
Technical Paper

Driver Mental Stress in Response to Thermal Stress Change during Highway Driving

2023-04-11
2023-01-0146
Monitoring driver thermal stress is an integral step for developing an automated climate control function. In this experimental study, various physiological measures for driver’s thermal stress were tracked while intentionally by altering thermal conditions of the seat with a seat air conditioning system (ACS) in summer and a seat heating system (HS) in winter. It was aimed to determine reliable physiological measures for identifying the changes in thermal status induced by the two seat climate control systems. In the first experiment, twenty experienced drivers drove a comfortable sedan for 60 minutes on a real highway while varying the intensity of the seat ACS every 10 minutes to incur ‘hot’ – ‘cool’ – ‘hot’ – ‘cool’ thermal stress. In the second experiment, a new group of eighteen drivers drove the same highway for 30 minutes while increasing the intensity of seat HS to incur ‘cold’ to ‘warm’ thermal stress.
Journal Article

A Study on the Improvement of EV One-Pedal Driving System Interface and Cost Reduction

2022-03-29
2022-01-0645
In this study it will show, big data analysis and user survey of driving records were conducted to investigate frequency of use and ease of operation of the regen paddle to control one-pedal driving system in electric vehicle. According to 3.8 million driving record big data analysis result, it was found that the driver manipulates 3.31 times on average during a single trip, mainly during the early stages of driving. According to user observation research result in 41.8% of participants did not used or used less than 5 time of regen paddle during one single trip. Also 336 participants, which occupy 83%, responded that the regen paddle manipulation for one-pedal driving was inconvenient. In conclusion, because of the use frequency of the regen paddle is low and the operation of regen paddle is inconvenient. It seems necessary to change the design of the regen paddle.
Technical Paper

Development of a Built-In Type Dashboard Camera with Reliability and Usability

2022-03-29
2022-01-0111
Dashcam, which is considered essential parts of vehicles in Korea, are installed in most vehicles for proofs of accidents or threatened driving of other vehicles, and insurance premiums. Also global market is growing continuously. Aftermarket dashcams have been developed with many improvements such as higher resolution camera and a LCD, however still have technical limitations in usability and durability. The First limitation is that the dashcam which mounted on windshield can be separated and injure at an accident due to a collision impact, and the device obstructs the driver's vision. In addition, the connection of the power supply may cause a vehicle damages such as a fire due to a worker's mistake or a product defect. Secondly, in order to replay the recorded video, it is not easy to remove the SD card and check it on the computer. Moreover, since the LCD is so small, it is difficult to search and replay the wanted video from the list in many files.
Technical Paper

A Development of the Driver IC in LED Rear Combination Lamp for Circuit Standardization

2021-04-06
2021-01-0850
Today, many automakers are using LED lamp sources in exterior lamps to establish brand awareness and introduce specialized lamp designs. These eye-catching LED lamp source solutions require many control functions as the lamp functions are diversified and advanced, and accordingly the requirements for standardization and optimization of controllers are increasing. In particular, our LED rear combination lamps have a variety of LED loads according to the design of the lamp model, the installation position, and the diagnostic regulations, so that the design complexity and the number of specifications of the controller are increased [4]. In recent years, more and more aesthetic designs and new technologies are used by various automakers to optimize their controllers in cooperation with global partners to optimize costs [1].
Technical Paper

Development of an Air Support System for Long-Distance Drive Comfort

2020-04-14
2020-01-0868
Passenger fatigue during long distance driving is greatly influenced by the comfort performance of the seat. Seat comfort performance is determined by the appropriate contour of the seat and the appropriate pad with sufficient thickness. The height of vehicle has been lowered to enhance car styling, and battery for electric vehicle applied to the underbody of the vehicle, reducing the package space of the seat in the vehicle. These external factors eventually lead to a reduced pad thickness of the seat cushion and compromise one of the important components in the seat cushion compartment, creating an uncomfortable cushioning problem when driving long distances. To improve the cushion composition of the seat within a limited package, air bladders are applied to the underside of the cushion pad. In addition, the function to support the buttocks using the air bladders of the lower cushion, similar to lumbar support for the back, was implemented to improve cushion comfort performance.
Technical Paper

The Effect of Driver's Behavior and Environmental Conditions on Thermal Management of Electric Vehicles

2020-04-14
2020-01-1382
Worldwide projections anticipate a fast-growing market share of the battery electric vehicles (BEVs) to meet stringent emissions regulations for global warming and climate change. One of the new challenges of BEVs is the effective and efficient thermal management of the BEV to minimize parasitic power consumption and to maximize driving range. Typically, the total efficiency of BEVs depends on the performance and power consumption of the thermal management system, which is highly affected by several factors, including driving environments (ambient temperature and traffic conditions) and driver's behavior (aggressiveness). Therefore, this paper investigates the influence of these factors on energy consumption by using a comprehensive BEV simulation integrated with a thermal management system model. The vehicle model was validated with experimental data, and a simulation study is performed by using the vehicle model over various traffic scenarios generated from a traffic simulator.
Technical Paper

A Development of the Model Based Torque Feedback Control with Disturbance Observer for Electric Power Steering System

2019-04-02
2019-01-1233
Electric Power Steering (EPS) needs to meet both functional and stability requirements, it plays significant role in controlling vehicle motion. In the meantime, customers emphasizes natural steering feel which can reflect vehicle motion and road surface information while isolate unwanted external disturbances. In general, conventional EPS control algorithms exert assist torque according to driver torque measured from torque sensor, while maintaining stability using stabilizing compensator. However, there exist significant trade-off between steering feel and stability, because the performances of assist torque control and stabilizing compensator are strongly coupled. In this paper a torque feedback control algorithm for EPS system is proposed in order to overcome the trade-off, and to achieve more natural, robust steering feel.
Technical Paper

Improvement of Steering Performance Using Steering Rack Force Control

2019-04-02
2019-01-1234
Drivers continually require steering performance improvement, particularly in the area of feedback from the road. In this study, we develop a new electrically-assisted steering logic by 1) analyzing existing steering systems to determine key factors, 2) modeling an ideal steering system from which to obtain a desirable driver torque, 3) developing a rack force observer to faithfully represent road information and 4) building a feedback compensator to track the tuned torque. In general, the estimator uses the driver torque, assist torque and other steering system signals. However, the friction of the steering system is difficult to estimate accurately. At high speed, where steering feeling is very important, greater friction results in increased error. In order to solve this problem, we design two estimators generated from a vehicle model and a steering system model. The observer that uses two estimators can reflect various operating conditions by using the strengths of each method.
Technical Paper

A Development of the Prediction and Optimization Tool for Wiper High Speed Performance

2019-03-25
2019-01-1417
In this paper, we focused on the robust wiping performance of high speed driven condition as an important situation for vehicle safety. Frist, we selected appropriate wiper performance parameter to accurately predict its ability not only systematic point but also vehicle point. Second, we obtained parameter sensitivity of wiper high-speed performance using DFSS technique. Third, we developed prediction and optimization tool using commercial program; Excel and Visual Basic. Finally, we improved our tool to compare vehicle test and then modified prediction coefficient for the accuracy of tool. Thus, we proposed a systematic tool to predict wiping performance in high speed vehicle, and successfully obtained efficiency when we developed the new project’s wiper performance.
Journal Article

Study on Basic Principles of Operation Noise of Wiper System on Vehicle

2019-03-25
2019-01-1421
The wiper system consists of a motor, linkage, arm, and blade, which provides a clear front view to the driver by removing rain, snow, and foreign matter from the windshield glass. It is a system component that requires a robust design to meet system rigidity, scrubbing performance, and operating noise to any external conditions to provide the driver with a front view. In recent years, however, customer complaints about wiper noise have increased as automobile engine and noise levels have decreased. Based on the analysis of wiper noise, this paper presents quantitative judgment criteria for various wiper noises. In addition, we predict the change of wiper noise to environmental factors through the sound field analysis and propose the solution.
Technical Paper

Experimental and Numerical Study on Speaker Design of Active Pedestrian Alerting System (APAS) in Hybrid and Pure Electric Vehicles

2018-06-13
2018-01-1550
APAS refers to a low speed sound warning system of electric vehicles, which emits alerting sound only to target pedestrians by sound focusing techniques with array of speakers and object detective camera. In the present study, experimental and numerical investigations are conducted in designing speaker part and array of APAS with consideration of three main performance matrices; HEV/EV warning sound regulations in Europe and U.S., pedestrian awareness, and driver’s noise comfort. The present APAS speaker consists of back enclosure, wave guide and front grill. Each of these components plays an important role for characterizing frequency emphasis and sound directivity. The main impedance frequencies of the speaker are determined by considering warning sound regulations and also by analyzing acoustic frequency response at in/outside of a vehicle.
Technical Paper

Development of Mass Producible ANC System for Broad-Band Road Noise

2018-06-13
2018-01-1561
The mass producible broad-band ANC system for road noise is developed with fully digital control system. For this configuration, installation packages are intensively considered by minimizing size of the controller, simplifying wiring system and implementing virtual microphone techniques. Virtual microphone technique enables error microphone to be installed in remote position of driver’s ear, and therefore, increases installation degree of freedom significantly. To enhance noise control performance with the minimum latency, filter design of FxLMS algorithm is optimized while additional audio compensation techniques are applied to maintain audio performance of amplifier. The present ANC system is equipped to HMC (Hyundai Motor Company) new release of hydrogen driven vehicle, which is introduced in the technology promotion event in Pyeongchang Olympic 2018.
Technical Paper

Development of Wireless Message for Vehicle-to-Infrastructure Safety Applications

2018-04-03
2018-01-0027
This paper summarizes the development of a wireless message from infrastructure-to-vehicle (I2V) for safety applications based on Dedicated Short-Range Communications (DSRC) under a cooperative agreement between the Crash Avoidance Metrics Partners LLC (CAMP) and the Federal Highway Administration (FHWA). During the development of the Curve Speed Warning (CSW) and Reduced Speed Zone Warning with Lane Closure (RSZW/LC) safety applications [1], the Basic Information Message (BIM) was developed to wirelessly transmit infrastructure-centric information. The Traveler Information Message (TIM) structure, as described in the SAE J2735, provides a mechanism for the infrastructure to issue and display in-vehicle signage of various types of advisory and road sign information. This approach, though effective in communicating traffic advisories, is limited by the type of information that can be broadcast from infrastructures.
Technical Paper

Validating Prototype Connected Vehicle-to-Infrastructure Safety Applications in Real- World Settings

2018-04-03
2018-01-0025
This paper summarizes the validation of prototype vehicle-to-infrastructure (V2I) safety applications based on Dedicated Short Range Communications (DSRC) in the United States under a cooperative agreement between the Crash Avoidance Metrics Partners LLC (CAMP) and the Federal Highway Administration (FHWA). After consideration of a number of V2I safety applications, Red Light Violation Warning (RLVW), Curve Speed Warning (CSW) and Reduced Speed Zone Warning with Lane Closure Warning (RSZW/LC) were developed, validated and demonstrated using seven different vehicles (six passenger vehicles and one Class 8 truck) leveraging DSRC-based messages from a Road Side Unit (RSU). The developed V2I safety applications were validated for more than 20 distinct scenarios and over 100 test runs using both light- and heavy-duty vehicles over a period of seven months. Subsequently, additional on-road testing of CSW on public roads and RSZW/LC in live work zones were conducted in Southeast Michigan.
X