Refine Your Search

Topic

Search Results

Viewing 1 to 13 of 13
Technical Paper

An MBSE Methodology for Cross-Domain Vehicle Performance Development

2024-04-09
2024-01-2499
Even if an optimal design is produced in the mid-to-late stages of development, when the maturity of development is increasing, it is already difficult to accept the proposal between the organizations and functions. In case the optimal proposal is made with a small amount of information in the preceding stage, it will be helpful for mutual decision-making. In addition, if all members have a system and development environment that enables access and utilization of necessary data in a timely manner, it is possible to produce quick results through collaboration. To implement such a system and development environment, “digital modeling" of tangible and intangible assets will be essential and to implement an "integrated IT environment" that can access and utilize digital models. Until now, Hyundai Motor Company has not yet fully established a digital development environment that all researchers can simultaneously utilize during the concept development stage.
Technical Paper

Development and Simulation Validation of a Wheel/Tire Selective-Matching Algorithm Considering an Error Function of Wheel Runout Measuring Equipment

2024-04-09
2024-01-2651
In this study, a novel selective matching logic for a wheel/tire is proposed, to decrease the vehicle driving vibration caused by wheel/tire non-uniformity. The new logic was validated through matching simulation/in-line matching evaluation. A theoretical radial force variation model was established by considering the theoretical model of the existing references and the wheel/tire assembly mechanism. The model was validated with ZF’s high-speed uniformity equipment, which is standard in the tire industry. The validity of the new matching logic was verified through matching simulation and mass production in-line evaluation. In conclusion, the novel logic presented herein was demonstrated to effectively decrease the radial force variation caused by the wheel/tire.
Technical Paper

Development of Classification of Customer Complaints Using Deep Learning

2024-04-09
2024-01-2789
In recent years, the automotive industry has been making efforts to develop vehicles that satisfy customers’ emotions rather than malfunctions by improving the durability of vehicles. The durability and reliability of vehicles sold in the U.S. can be determined through the VDS (Vehicle Dependability Study) published by JD Power. The VDS is index which is the number of complaints per 100 units released by J.D. POWER in every year. It investigates customers who have used it for 3 years after purchasing a new car and consists of 177 specific problems grouped into 8 categories such as PT, ACEN, FCD, Exterior. The VDS-4 has been strengthened since the introduction of the new evaluation system VDS-5 in 2015. In order to improve the VDS index, it is important to gather various customer complaints such as internet data, warranty data, Enprecis data and clarify the problem and cause. Enprecis data is survey of customer complaints by on-line in terms of VDS.
Technical Paper

A Development of the Driver IC in LED Rear Combination Lamp for Circuit Standardization

2021-04-06
2021-01-0850
Today, many automakers are using LED lamp sources in exterior lamps to establish brand awareness and introduce specialized lamp designs. These eye-catching LED lamp source solutions require many control functions as the lamp functions are diversified and advanced, and accordingly the requirements for standardization and optimization of controllers are increasing. In particular, our LED rear combination lamps have a variety of LED loads according to the design of the lamp model, the installation position, and the diagnostic regulations, so that the design complexity and the number of specifications of the controller are increased [4]. In recent years, more and more aesthetic designs and new technologies are used by various automakers to optimize their controllers in cooperation with global partners to optimize costs [1].
Technical Paper

A Development of the Prediction and Optimization Tool for Wiper High Speed Performance

2019-03-25
2019-01-1417
In this paper, we focused on the robust wiping performance of high speed driven condition as an important situation for vehicle safety. Frist, we selected appropriate wiper performance parameter to accurately predict its ability not only systematic point but also vehicle point. Second, we obtained parameter sensitivity of wiper high-speed performance using DFSS technique. Third, we developed prediction and optimization tool using commercial program; Excel and Visual Basic. Finally, we improved our tool to compare vehicle test and then modified prediction coefficient for the accuracy of tool. Thus, we proposed a systematic tool to predict wiping performance in high speed vehicle, and successfully obtained efficiency when we developed the new project’s wiper performance.
Technical Paper

Development of Wireless Message for Vehicle-to-Infrastructure Safety Applications

2018-04-03
2018-01-0027
This paper summarizes the development of a wireless message from infrastructure-to-vehicle (I2V) for safety applications based on Dedicated Short-Range Communications (DSRC) under a cooperative agreement between the Crash Avoidance Metrics Partners LLC (CAMP) and the Federal Highway Administration (FHWA). During the development of the Curve Speed Warning (CSW) and Reduced Speed Zone Warning with Lane Closure (RSZW/LC) safety applications [1], the Basic Information Message (BIM) was developed to wirelessly transmit infrastructure-centric information. The Traveler Information Message (TIM) structure, as described in the SAE J2735, provides a mechanism for the infrastructure to issue and display in-vehicle signage of various types of advisory and road sign information. This approach, though effective in communicating traffic advisories, is limited by the type of information that can be broadcast from infrastructures.
Technical Paper

Validating Prototype Connected Vehicle-to-Infrastructure Safety Applications in Real- World Settings

2018-04-03
2018-01-0025
This paper summarizes the validation of prototype vehicle-to-infrastructure (V2I) safety applications based on Dedicated Short Range Communications (DSRC) in the United States under a cooperative agreement between the Crash Avoidance Metrics Partners LLC (CAMP) and the Federal Highway Administration (FHWA). After consideration of a number of V2I safety applications, Red Light Violation Warning (RLVW), Curve Speed Warning (CSW) and Reduced Speed Zone Warning with Lane Closure Warning (RSZW/LC) were developed, validated and demonstrated using seven different vehicles (six passenger vehicles and one Class 8 truck) leveraging DSRC-based messages from a Road Side Unit (RSU). The developed V2I safety applications were validated for more than 20 distinct scenarios and over 100 test runs using both light- and heavy-duty vehicles over a period of seven months. Subsequently, additional on-road testing of CSW on public roads and RSZW/LC in live work zones were conducted in Southeast Michigan.
Technical Paper

A Study of Suspension Tightening Torque on the R&H Performance of High Performance Vehicles

2018-04-03
2018-01-0577
Suspension is a system which operates dynamically according to road condition unlike other system statically mounted to the body. Especially this is more remarkable in high performance vehicle because there are more high inputs from road to suspension than normal vehicle. For this reason, the tightening torque of suspension system of high performance vehicle is more important than other systems and normal vehicle. To support the clamping between parts against force from road when cornering, optimized tightening torque is required to maximize R&H performance. For this optimization, it should be conducted first to comprehend how much performance effects on vehicle by tightening torque. This paper presents relationship between tightening torque of suspension parts hardware and R&H performance.
Technical Paper

Development of Smart Shift and Drive Control System Based on the Personal Driving Style Adaptation

2016-04-05
2016-01-1112
In general, driving performance is developed to meet preference of average customers. But there is no single standardized guideline which can satisfy various driving tastes of all drivers whose gender, cultural background, and age are different. To resolve this issue, automotive companies have introduced drive mode buttons which drivers can manually select from Normal, Eco, and Sport driving modes. Although this multi-mode manual systems is more efficient than single-mode system, it is in a transient state where drivers need to go through troubles of frequently selecting their preferred drive mode in volatile driving situations It is also doubtful whether the three-categorized driving mode can meet complex needs of drivers.. In order to settle these matters, it is necessary to analyze individual driving style automatically and to provide customized driving performance service in real time.
Technical Paper

Development of Engine Control Using the In-Cylinder Pressure Signal in a High Speed Direct Injection Diesel Engine

2011-04-12
2011-01-1418
Emissions regulations are becoming more severe, and they remain a principal issue for vehicle manufacturers. Many engine subsystems and control technologies have been introduced to meet the demands of these regulations. For diesel engines, combustion control is one of the most effective approaches to reducing not only engine exhaust emissions but also cylinder-by-cylinder variation. However, the high cost of the pressure sensor and the complex engine head design for the extra equipment are stressful for the manufacturers. In this paper, a cylinder-pressure-based engine control logic is introduced for a multi-cylinder high speed direct injection (HSDI) diesel engine. The time for 50% of the mass fraction to burn (MFB50) and the IMEP are valuable for identifying combustion status. These two in-cylinder quantities are measured and applied to the engine control logic.
Technical Paper

Predicting Driving Postures and Seated Positions in SUVs Using a 3D Digital Human Modeling Tool

2008-06-17
2008-01-1856
3D digital human modeling (DHM) tools for vehicle packaging facilitate ergonomic design and evaluation based on anthropometry, comfort, and force analysis. It is now possible to quickly predict postures and positions for drivers with selected anthropometry based on ergonomics principles. Despite their powerful visual representation technology for human movements and postures, these tools are still questioned with regard to the validity of the output they provide, especially when predictions are made for different populations. Driving postures and positions of two populations (i.e. North Americans and Koreans) were measured in actual and mock-up SUVs to investigate postural differences and evaluate the results provided by a DHM tool. No difference in driving postures was found between different stature groups within the same population. Between the two populations, however, preferred angles differed for three joints (i.e., ankle, thigh, and hip).
Technical Paper

The Study on the Optimization of Attachment Stiffness in Vehicle Body

2007-05-15
2007-01-2346
The achievement of improved NVH performance with light weighted body and low cost is very important, but difficult job to be accomplished in vehicle development. One of the various methods for the accomplishment of this goal is the optimization of the stiffness attached to a vehicle body and chassis. It is known that sufficient stiffness at the body attachments improves the flexibility of bushing rate tuning. In this paper, the theoretical consideration and analysis tool to estimate local stiffness value quantitatively are introduced. Also, the local stiffness values at various attachment locations in trimmed body are measured. The operational forces at body attachments are estimated through the TPA (Transfer Path Analysis). The suitability of attachment stiffness is judged based on the required NVH target to attain the optimal attachment stiffness in vehicle body.
Technical Paper

Development of Fuel Consumption of Passenger Diesel Engine with 2 Stage Turbocharger

2006-04-03
2006-01-0021
High specific power, additional hardware and mapping optimization was done to achieve reduction of fuel economy for current engine in this study. 2 stage turbocharger with serial configuration was best candidate not only for high specific power at high engine speed but also for increase of low end torque for current engine. This increase of low end torque is important for development of transient characteristic of vehicle. DoE and efficient EGR Cooler was applied for optimization of fuel economy. DoE was useful for optimization of fuel consumption affected by various fuel injection parameters. This DoE was also efficient for matching optimal fuel economy after change of engine hardware. Performance improvement of engine with 2 stage turbocharger VGT was evaluated and additional development of fuel economy was performed in this study.
X