Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

The Impact of High Cell Density Ceramic Substrates and Washcoat Properties on the Catalytic Activity of Three Way Catalysts

1999-03-01
1999-01-0272
The present paper describes the results of a joint development program focussing on a system approach to meet the EURO IV emission standards for an upper class passenger car equipped with a newly developed high displacement gasoline engine. Based on the well known catalyst systems of recent V6- and V8-engines for the EURO III emission standards with a combination of close coupled catalysts and underfloor catalysts, the specific boundary conditions of an engine with an even larger engine displacement had to be considered. These boundary conditions consist of the space requirements in the engine compartment, the power/torque requirements and the cost requirements for the complete aftertreatment system. Theoretical studies and computer modeling showed essential improvements in catalyst performance by introducing thin wall substrates with low thermal inertia as well as high cell densities with increased geometric surface area.
Technical Paper

Development and Application of a Computer Aided Engineering Tool for Hydrocarbon Adsorber Catalysts

1999-03-01
1999-01-0456
To support the application and design of exhaust gas aftertreatment systems for gasoline fueled passenger cars based on hydrocarbon adsorber catalysts, a computer model was developed. This model is based on simplified, lumped kinetics for the adsorption and desorption of hydrocarbons and for the oxidation of CO and hydrocarbons. Also included in the model are convective transport of heat and mass in the gas phase, mass and heat transfer to the washcoat layer, and diffusion with reaction in the washcoat layer. The continuity equations for this model with the appropriate boundary conditions were solved for a single channel assuming adiabatic behavior. After validation of the prediction on experimental results, this model was used to perform a simple parametric study on the influence of inlet temperature,CO concentration, washcoat loading, adsorber content, and cell density on the HC emission.
X