Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

Assessing the Efficiency of a New Gasoline Compression Ignition (GCI) Concept

2020-09-15
2020-01-2068
A practical Gasoline Compression Ignition (GCI) concept is presented that works on standard European 95 RON E10 gasoline over the whole speed/load range. A spark is employed to assist the gasoline autoignition at low loads; this avoids the requirement of a complex cam profile to control the local mixture temperature for reliable autoignition. The combustion phasing is controlled by the injection pattern and timing, and a sufficient degree of stratification is needed to control the maximum rate of pressure rise and prevent knock. With active control of the swirl level, the combustion system is found to be relatively robust against variability in charge motion, and subtle differences in fuel reactivity. Results show that the new concept can achieve very low fuel consumption over a significant portion of the speed/load map, equivalent to diesel efficiency. The efficiency is worse than an equivalent diesel engine only at low load where the combustion assistance operates.
Technical Paper

The Impact of Intake Valve Dynamics on Knock Propensity in a Dual-Fuel SI Engine

2017-10-08
2017-01-2236
In this study, the impact of the intake valve timing on knock propensity is investigated on a dual-fuel engine which leverages a low octane fuel and a high octane fuel to adjust the fuel mixture’s research octane rating (RON) based on operating point. Variations in the intake valve timing have a direct impact on residual gas concentrations due to valve overlap, and also affect the compression pressure and temperature by altering the effective compression ratio (eCR). In this study, it is shown that the fuel RON requirement for a non-knocking condition at a fixed operating point can vary significantly solely due to variations of the intake valve timing. At 2000 rpm and 6 bar IMEP, the fuel RON requirement ranges from 80 to 90 as a function of the intake valve timing, and the valve timing can change the RON requirement from 98 to 104 at 2000 rpm and 14 bar IMEP.
Technical Paper

A Fully-Analytical Fuel Consumption Estimation for the Optimal Design of Light- and Heavy-Duty Series Hybrid Electric Powertrains

2017-03-28
2017-01-0522
Fuel consumption is an essential factor that requires to be minimized in the design of a vehicle powertrain. Simple energy models can be of great help - by clarifying the role of powertrain dimensioning parameters and reducing the computation time of complex routines aiming at optimizing these parameters. In this paper, a Fully Analytical fuel Consumption Estimation (FACE) is developed based on a novel GRaphical-Analysis-Based fuel Energy Consumption Optimization (GRAB-ECO), both of which predict the fuel consumption of light- and heavy-duty series hybrid-electric powertrains that is minimized by an optimal control technique. When a drive cycle and dimensioning parameters (e.g. vehicle road load, as well as rated power, torque, volume of engine, motor/generators, and battery) are considered as inputs, FACE predicts the minimal fuel consumption in closed form, whereas GRAB-ECO minimizes fuel consumption via a graphical analysis of vehicle optimal operating modes.
Technical Paper

An Innovative Approach Combining Adaptive Mesh Refinement, the ECFM3Z Turbulent Combustion Model, and the TKI Tabulated Auto-Ignition Model for Diesel Engine CFD Simulations

2016-04-05
2016-01-0604
The 3-Zones Extended Coherent Flame Model (ECFM3Z) and the Tabulated Kinetics for Ignition (TKI) auto-ignition model are widely used for RANS simulations of reactive flows in Diesel engines. ECFM3Z accounts for the turbulent mixing between one zone that contains compressed air and EGR and another zone that contains evaporated fuel. These zones mix to form a reactive zone where combustion occurs. In this mixing zone TKI is applied to predict the auto-ignition event, including the ignition delay time and the heat release rate. Because it is tabulated, TKI can model complex fuels over a wide range of engine thermodynamic conditions. However, the ECFM3Z/TKI combustion modeling approach requires an efficient predictive spray injection calculation. In a Diesel direct injection engine, the turbulent mixing and spray atomization are mainly driven by the liquid/gas coupling phenomenon that occurs at moving liquid/gas interfaces.
Technical Paper

Sensitivity of SCR Control Strategies to Diesel Exhaust Fluid Quality: A Simulation Study

2015-04-14
2015-01-1051
This paper presents the evaluation of the impact of Diesel Exhaust Fluid (DEF) quality on the behavior of a controlled SCR system. Proper control of the Selective Catalytic Reduction system is crucial to fulfill NOx emissions standards of modern Diesel engines. Today, the urea concentration of DEF is not considered as a control system input. Moreover, Urea Quality Sensors (UQS) are now available to provide real time information of Diesel Exhaust Fluid quality. The impact of percent urea from 20 to 36% on the NOx emissions of a passenger car 2.2L Diesel engine is calculated using a reference SCR model and a reference SCR control tool in multiple NEDC transient conditions. Several control tunings are tested with different levels of feedback. Ammonia slip levels are also calculated.
Technical Paper

Optimal Online Energy Management for Diesel HEV: Robustness to Real Driving Conditions

2013-04-08
2013-01-1471
This paper addresses the robustness of an optimal online energy management for diesel hybrid electric vehicle (HEV). Optimal strategy is based on the Equivalent Consumption Minimization Strategy (ECMS). Optimal torque split between engine and electric motor is found by minimizing fuel consumption and Nitrogen Oxides (NOx) emissions. Online adaptation is made in order to ensure battery charge sustainability and good driveability when driving conditions are unknown. The strategy is tested in simulation over one hundred driving cycles representative of real-world conditions. Results obtained with the online strategy are compared with those of an offline optimal strategy (knowing the driving cycle a priori). Even if a slight degradation is noticed in comparison to optimal case, fuel economy and NOx reduction - provided by hybridization - are conserved with the online strategy.
X