Refine Your Search

Topic

Affiliation

Search Results

Technical Paper

Development of a Digital Twin to Support the Calibration of a Highly Efficient Spark Ignition Engine

2023-06-26
2023-01-1215
The role of numerical simulations in the development of innovative and sustainable powertrains is constantly growing thanks to their capabilities to significantly reduce the calibration efforts and to point out potential synergies among different technologies. In such a framework, this paper describes the development of a fully physical 1D-CFD engine model to support the calibration of the highly efficient spark ignition engine of the PHOENICE (PHev towards zerO EmissioNs & ultimate ICE efficiency) EU H2020 project. The availability of a reliable simulation platform is essential to effectively exploit the combination of the several features introduced to achieve the project target of 47% peak gross indicated efficiency, such as SwumbleTM in-cylinder charge motion, Miller cycle combined with high Compression Ratio (CR), lean mixture exploiting cooled low pressure Exhaust Gas Recirculation (EGR) and electrified turbocharging.
Technical Paper

Combustion characteristics of oxygenated fuels Ethanol-and Butanol-gasoline fuel blends, and their impact on performance, emissions and Soot Index

2019-12-19
2019-01-2307
Oxygenated fuels are studied in spark combustion engines because of their potentially positive impact on greenhouse emissions, and as part of alternative renewable fuels. Furthermore, engine test results position them as a promising lever to reduce engine-out emissions, and most notably, particles. This study focuses on oxygenated fuel Butanol, which is a potential output of recent developments on Algae and Cyanobacteria harvest process. Its blending into gasoline and application into spark ignition engines is investigated. Blending levels of n-Butanol and iso-Butanol have been proposed based on standard gasoline’s octane number, RON, at two ethanol concentration levels, 10 and 25%. Fuel blend impact on combustion, and on regulated and non-regulated emissions is analysed. Fuel knock resistance properties, RON and MON, determine the knocking tendencies for ethanol and butanol at 2000 rpm. However, test results highlight different knocking sensibility behaviour at higher engine speed.
Technical Paper

Innovative Approach and Tools to Design Future Two-Wheeler Powertrain

2015-11-17
2015-32-0763
As congestion increases and commute times lengthen with the growing urbanization, many customers will look for effective mobility solutions. Two-wheeler are one of the solutions to deal with these issues, in particular if equipped with electrified powertrains for minimized local noise and air pollutant emissions. Scooters powertrain technology is predominantly based on Spark Ignition Engine (ICE) associated with a Continuously Variable Transmissions (CVT) and a Centrifugal Clutch. Nevertheless, even though CVT gives satisfaction in simplicity, fun to drive, cost effectiveness and vehicle dynamics, its efficiency is an undeniable drawback. Indeed, a conventional CVT is wasting more than 50% of ICE effective power in customer driving conditions. Consequently, those vehicles have high fuel consumption relative to their size, and are equipped with overpowered and heavy internal combustion engines, allowing a large area for further improvements.
Technical Paper

Calibration Methodology in System Simulation to Predict Heat Transfer Along the Exhaust Line of a Diesel Engine

2014-04-01
2014-01-1184
Emission regulations have become increasingly stringent in recent years. Current regulations need the development of a new worldwide driving cycle which gives greater weight to the pollutants emitted during transient phases or cold starts. Powertrains contain a large number of components such as multistage turbocharger systems; exhaust gas recirculation, after-treatment devices and sometimes an electric motor. In this context, 0D predictive models of heat transfer in the exhaust line, calibrated with experimental data, are particularly interesting. Many investigations are related to the development of precise control laws in order to optimize the light-off of after-treatment elements during the engine starting phase. A better understanding of the thermal phenomena occurring in the exhaust line is necessary. To study the heat transfer in the exhaust line of a Diesel engine during transient conditions, the temperature in the exhaust line must be known precisely.
Technical Paper

Optimization of Dual Fuel Diesel-Methane Operation on a Production Passenger Car Engine - Thermodynamic Analysis

2013-10-14
2013-01-2505
With the emergence of stringent emissions standards and needs for fuel diversification, many countries are considering a massive use of natural gas for transportation. In this context, dual fuel diesel-CNG combustion is considered as a promising solution for highly efficient internal combustion engines. This concept offers the possibility to combine a diesel pilot injection as a high energy combustion initiation event, with an indirect injection of methane as main energy source. Low CO2 emissions can be reached thanks to the use of a conventional compression ignition engine with high compression ratio, and thanks to methane's high knocking resistance and low carbon content. Another benefit of dual fuel operation with high diesel substitution rates is the drastic reduction of PM emissions since methane is a very stable molecule containing no soot precursor.
Journal Article

Potential of Several Alternative Propulsion Systems for Light Rotorcrafts Applications

2013-09-17
2013-01-2230
Reducing greenhouse gas emissions to limit global warming is becoming one of the key issues of the 21st century. As a growing contributor to this phenomenon, the aeronautic transport sector has recently taken drastic measures to limit its impact on CO2 and pollutants, like the aviation industry entry in the European carbon market or the ACARE objectives. However the defined targets require major improvements in existing propulsion systems, especially on the gas generator itself. Regarding small power engines for business aviation, rotorcrafts or APU, the turboshaft is today a dominant technology, despite quite high specific fuel consumption. In this context, solutions based on Diesel Internal Combustion Engines (ICE), well known for their low specific fuel consumption, could be a relevant alternative way to meet the requirements of future legislations for low and medium power applications (under 1000kW).
Technical Paper

Modular Methodology to Optimize Innovative Drivetrains

2013-09-08
2013-24-0080
In this paper, an integrated simulation-based methodology demonstrating feasibility and performance of several electric-hybrid concepts is developed. Several advanced tools are coupled to define the specifications of each component of the hybrid powertrain, to select the most promising hybrid architecture and finally to assess the proposed powertrain with regard to CO2 and pollutants emissions. Concurrent minimization of NOx and CO2 emissions enables to find the best compromise to fulfil Euro 6 standards while lowering fuel consumption. This stage consists in an iterative co-optimization of the power split strategies between the electric drive and the Diesel engine and of the engine settings (injection pressure, EGR rate, etc.). The methodology combines optimal control laws and optimization methodology based on global statistical models using single-cylinder design of experiments. After several iterations, this method allows to find the optimal NOx/CO2 trade-off curve.
Journal Article

LP EGR and IGR Compromise on a GDI Engine at Middle Load

2013-04-08
2013-01-0256
Burned gas recirculation is emerging as a promising technology to reduce fuel consumption without compromising performance in turbocharged spark ignited engines. This recirculation can be done internally through Internal Gas Residual (IGR) using Variable Valve Timing (VVT) or externally through classical Exhaust Gas Recirculation circuit (EGR). Both have a large impact on combustion. The purpose of the paper is to give clues to get the best compromise at moderate load between these two technologies in terms of fuel consumption. This experimental work was performed on a Gasoline Direct Injection (GDI) engine, 2.0L displacement, dual independent VVT, equipped with a Low Pressure, cooled and catalyzed EGR loop (LP EGR). The load region covers 6 to 10 bar Indicated Mean Effective Pressure (IMEP). EGR rates obtained vary between 0 and 15%. IGR variation is obtained by using the VVT in order to vary the valve overlap. IGR rates vary from 4 to 8%.
Journal Article

Smart Soot Sensor for Particulate Filter OBD

2013-04-08
2013-01-1334
In the frame of tighter emission requirements and environmental protection, future standards will soon lead to the use of an OBD soot sensor to monitor DPF leakage. Such a sensor will first be introduced in the US by MY 2015 and then in Europe for Euro 6.2 in 2017. The resistive ceramic sensing technology has been selected by most OEM as the most appropriate. The sensor collects the soot in a time cumulative manner and has an internal heater to clean the ceramic before each measurement sequence. The actual challenge of the hardware is to design a wide band collecting system with a high sensitivity and repeatability circuit processing. Electricfil has overcome major drawbacks of the resistive technology with an innovative sensor tip, with filtration features and a boosting electronic scheme. This sensor integrates internal diagnostic capability at power on and during operation.
Journal Article

Study of Soot Formation and Oxidation in the Engine Combustion Network (ECN), Spray A: Effects of Ambient Temperature and Oxygen Concentration

2013-04-08
2013-01-0901
Within the Engine Combustion Network (ECN) spray combustion research frame, simultaneous line-of-sight laser extinction measurements and laser-induced incandescence (LII) imaging were performed to derive the soot volume fraction (fv). Experiments are conducted at engine-relevant high-temperature and high-pressure conditions in a constant-volume pre-combustion type vessel. The target condition, called "Spray A," uses well-defined ambient (900 K, 60 bar, 22.8 kg/m₃, 15% oxygen) and injector conditions (common rail, 1500 bar, KS1.5/86 nozzle, 0.090 mm orifice diameter, n-dodecane, 363 K). Extinction measurements are used to calibrate LII images for quantitative soot distribution measurements at cross sections intersecting the spray axis. LII images are taken after the start of injection where quasi-stationary combustion is already established.
Journal Article

Comparison of PFI and DI Operation in a Downsized Gasoline Engine

2013-04-08
2013-01-1103
A 300 cc gasoline engine has been experimentally and numerically studied to compare PFI and DI operation on naturally-aspirated and turbocharged full load operating points. Experiment outlines the benefits from DI operation in terms of volumetric efficiency, fuel economy and knock propensity but also clearly indicates worse raw engine-out CO emissions. The latter is an indication of the survival of a large scale mixture heterogeneity in this downsized GDI engine even when early injection and intense induced fluid motion are combined. For such a full load operation, the application of optical diagnostics to study mixture heterogeneity cannot be considered because pressure and temperature exceed sustainable levels for transparent materials. Therefore, 3D CFD RANS computations of the intake, injection, combustion and pollutant formation processes including detailed chemistry information are performed to complement the experimental data.
Technical Paper

Evaluation of Different Tabulation Techniques Dedicated to the Prediction of the Combustion and Pollutants Emissions on a Diesel Engine with 3D CFD

2013-04-08
2013-01-1093
In this paper three turbulent combustion models with different underlying hypothesis are compared with measurements from an extensive experimental database. The reference model is ECFM3Z, with the Tabulated Kinetics of Ignition (TKI) model for auto-ignition modeling, together with the CO reduced kinetics (CORK) model and the extended Zeldovich model for the nitrogen oxides. The VVTHC (Variable Volume Tabulated Homogeneous Chemistry) model predicts both the heat release and species evolutions (including CO). The most evolved model proposed is the ADF-PCM (Approximated Diffusion Flame-Presumed Conditional Moment) approach, based on the laminar flamelet equation of the progress variable. ADF-PCM and VVTHC are tabulated models based on a progress variable approach and are then coupled to the tabulated NO model NORA based on relaxation (NO Relaxation Approach). All the present combustion models are coupled to a phenomenological soot kinetics PSK approach.
Technical Paper

About Cross-Sensitivities of NOx Sensors in SCR Operation

2013-04-08
2013-01-1512
Meeting the upcoming NOx emissions standards is a major challenge for the lean-burn engines, thus requiring a highly efficient exhaust gas aftertreatment. Currently, the Selective Catalytic Reduction (SCR) appears to be the most promising technology, especially when operated with two kinds of reductants: ammonia (generally derived from urea) and ethanol. In order to reach high conversion levels while avoiding the overinjection of the reductant, a very accurate model-based control assisted with at least one NOx sensor is required. This study focuses on the sensitivity of NOx sensors to the main nitrogenous species encountered: ammonia, isocyanic acid (HNCO) and hydrogen cyanide (HCN). The cross-sensitivity to ammonia is the only one to be already described in literature and already used in the urea-SCR control systems to limit the risks of ammonia-slip. However, HNCO can also be found downstream of a catalyst during urea-SCR if the urea delivery or the catalyst are deficient.
Journal Article

Quantitative Fuel-Air-Mixing Measurements in Diesel-Like Sprays Emanating from Convergent and Divergent Multi-Layer Nozzles

2012-04-16
2012-01-0464
It is the objective of this work to characterize mixture formation in the sprays emanating from Multi-Layer (ML) nozzles under approximately engine-like conditions by quantitative, spatially, and temporally resolved fuel-air ratio and temperature measurements. ML nozzles are cluster nozzles which have more than one circle of orifices. They were introduced previously, in order to overcome the limitations of conventional nozzles. In particular, the ML design yields the potential of variable spray interaction, so that mixture formation could be controlled according to the operating condition. In general, it was also a primary aim of the cluster-nozzle concepts to combine the enhanced atomization and pre-mixing of small nozzle holes with the longer spray penetration lengths of large holes. The applied diagnostic, which is based on 1d spontaneous Raman scattering, yields the quantitative stoichiometric ratio and the temperature in the vapor phase.
Technical Paper

Sensitivity Study on the Design Methodology of an Electric Vehicle

2012-04-16
2012-01-0820
Reducing greenhouse gas emissions to alleviate global warming will certainly be one of the major challenges of the 21st century. Transportation plays a very important part in this, which is why the European Commission and the European manufacturers have found an agreement to limit the average emissions of vehicles to 130 gCO₂/km in 2012 and 95 gCO₂/km in 2020. Cutting vehicles' consumption of hydrocarbons is becoming a critical issue to reach these ambitious targets. Electric vehicles, characterized by zero direct CO₂ emissions, seem to be a relevant way to achieve these CO₂ emissions. Despite their capabilities to emit no local pollution and to operate silently, electric vehicles have also one important drawback: the limited autonomy offered to the customer. As for conventional vehicles, energy consumption for electric vehicles is very dependant of driving conditions, such as driving cycles and ambient temperature operating conditions for instance.
Technical Paper

Exhaust Temperature Management for Diesel Engines Assessment of Engine Concepts and Calibration Strategies with Regard to Fuel Penalty

2011-09-11
2011-24-0176
Both, the continuous strengthening of the exhaust emission legislation and the striving for a substantial reduction of carbon dioxide output in the traffic sector depict substantial requirements for the development of future diesel engines. These engines will comprise not only the mandatory diesel oxidation catalyst (DOC) and particulate filter DPF but a NOx aftertreatment system as well - at least for heavier vehicles. The oxidation catalysts as well as currently available NOx aftertreatment technologies, i.e., LNT and SCR, rely on sufficient exhaust gas temperatures to achieve a proper conversion. This is getting more and more critical due to the fact that today's and future measures for CO₂ reduction will result in further decrease of engine-out temperatures. Additionally this development has to be considered in the light of further engine electrification and hybridization scenarios.
Technical Paper

Closed Loop Combustion Control - Enabler of Future Refined Engine Performance Regarding Power, Efficiency, Emissions & NVH under Stringent Governmental Regulations

2011-09-11
2011-24-0171
Both, the continuous strengthening of the exhaust emission legislation and the striving for a substantial reduction of the carbon dioxide output in the traffic sector depict substantial requirements for the global automotive industry and especially for the engine manufacturers. From the multiplicity of possible approaches and strategies for clear compliance with these demands, engine internal measures offer a large and, eventually more important, very economical potential. For example, the achievements in fuel injection technology are a measure which in the last years has contributed significantly to a notable reduction of the emissions of the modern DI Diesel engines at favorable fuel efficiency. Besides the application of modern fuel injection technology, the linked combustion control (Closed Loop Combustion Control) opens possibilities for a further optimization of the combustion process.
Technical Paper

IFP Energies Nouvelles Approach for Dual Fuel Diesel-Gasoline Engines

2011-09-11
2011-24-0065
Compared to Spark Ignition (SI) engines, Compression Ignition (CI) engines are more efficient because of the higher compression ratios and leaner operation. However, thanks to stoichiometric air fuel ratio, SI engines allow efficient pollutants after treatment, particularly for NOx emissions. In this context, IFP Energies nouvelles (IFPEN) has developed the concept of diesel-gasoline combustion in order to combine the advantages of both fuels and both combustion processes. Focusing on a passenger car application, experiments have been performed using a modified DI turbocharged small diesel engine (the combustion chamber has been redesigned and port fuel injectors have been added). In-Cylinder Fuel Blending (ICFB) using port-fuel-injection of gasoline and optimized direct injection of diesel was used to control combustion phasing and duration. This modified engine can still run on diesel alone.
Technical Paper

Influence of Fischer-Tropsch Incorporation on Engine Outputs and Performances of a Modern Diesel Engine with Standard and Optimized Settings

2011-09-11
2011-24-0114
In a context of a fossil reserve depletion and reduction of greenhouse gases (GHG) emissions, the search for new energy for transport is fundamental. Among those new energies, alternative fuels and especially synthetic fuel from Fischer-Tropsch process (so-called XtL, "X-to-Liquid" fuels) seem to have an interesting potential in terms of availability and GHG emission reduction, according to the feedstock used. Due to the special properties of such products, especially high cetane number, several strategies of incorporation can be envisaged: as a blend in specific basestocks in order to obtain a conventional fuel or a premium fuel or as a pure component. In order to assess these strategies; a standard diesel fuel (B0), a blend with 40%vol of Fischer-Tropsch and a neat Fischer-Tropsch have been tested on a modern downsized high pressure direct injection single-cylinder diesel engine. The used Fischer-Tropsch fuel is a commercial GtL - Gas to Liquid, with a cetane number higher than 80.
Technical Paper

Effects of Ethanol Addition in RON 95 Gasoline on GDI Stratified Combustion

2011-09-11
2011-24-0055
The aim of this work is to study the effect of ethanol/gasoline blends on stratified operation in a single-cylinder GDI engine and to build up a large database that will be used to improve engine simulation codes. The effects of three different fuel blends are compared: a reference RON 95 fuel without oxygenates, E20 with 20% in volume of ethanol added to the RON 95 fuel, and E85 corresponding to 85% of ethanol added to the RON 95 fuel. The engine was equipped with a centrally-mounted piezoelectric injector. A wide range of engine speed and load operating conditions were studied: from 1000 to 4000 rpm and from 1.5 to 9 bar IMEP. Injection strategies were optimized using up to three injections per working cycle. It was shown that multi-injection is necessary to improve stratified combustion stability and to limit particulate emissions.
X