Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Turbo Compounding of a Naturally Aspirated Single Cylinder Diesel Engine – A Simulation and Experimental Study

2023-10-24
2023-01-1845
Almost one-third of the fuel energy is wasted into the atmosphere via exhaust gas from an internal combustion engine. Despite several advancements in waste heat recovery technology, single-cylinder engines in the market that are currently in production remain naturally aspirated without any waste heat recovery techniques. Turbocharging is one of the best waste heat recovery techniques. However, a standard turbocharger cannot be employed in the single-cylinder engine due to technical challenges such as pulsated flow conditions at the exhaust, phase lag in the intake and exhaust valve opening. Of late, the emphasis on reducing exhaust emissions has been a primary focus for any internal combustion engine manufacturer, with the onset of stricter emission norms. Thus, the engine designer must prioritize emission reduction without compromising engine performance.
Technical Paper

Experimental Studies on the Use of Methanol-Butanol Blends in a Hot Surface Ignition Engine

2023-04-11
2023-01-0316
The property of methanol to surface ignite can be exploited to use it in a diesel engine even though its cetane number is very low. Poor lubricity of methanol is still an issue and special additives are needed in order to safeguard the injection system components. In this work a common rail three cylinder, turbocharged diesel engine was run in the glow plug based hot surface ignition mode under different injection strategies with methanol as the main fuel in a blend with n-butanol. n-Butanol was used mainly to enhance the viscosity and lubricity of the blend. The focus was on the effect of different injection strategies. Initially three blends with methanol to n-butanol mass ratios of 60:40, 70:30 and 80:20 were evaluated experimentally with single pulse fuel injection. Subsequently the selected blend of 70:30 was injected as two pulses (with almost equal mass shares) with the gap between them and their timing being varied.
Technical Paper

Experimental Studies on a Small-Bore Port Fuel Injected SI Engine Operated on Neat Methanol and Comparison with Gasoline

2022-06-14
2022-37-0017
In many Asian countries a significant automobile market share is held by two and three wheelers. Generally, cost and simplicity considerations limit the performance and emission levels of small engines. Methanol is an excellent alternative fuel for SI engines due to its high-octane number, high flame speed, presence of oxygen in its molecule and thus can be used to enhance the performance of small engines. However, use of neat methanol in SI engines poses constraints due to low energy density and poor vaporization characteristics. Also, the effectiveness of methanol as a fuel has still to be thoroughly investigated in small-bore SI engines in order to assess its potential. In this work, a small-bore 200cc three-wheeler automotive engine was modified to operate in the port fuel injection mode with neat methanol as the fuel.
Technical Paper

Simulation Studies on Glow Plug Assisted Neat Methanol Combustion in a Diesel Engine

2022-03-29
2022-01-0519
Methanol has a very low cetane number but it can be used in the neat form in a glow plug based hot surface ignition (HSI) engine at CI engine compression ratios. A CFD simulation model of a glow plug assisted methanol HSI engine was developed and validated using experimental data reported in literature. A study on the effect of single and multipulse injection of methanol, glow plug surface temperature, injection pressure and effect of shielding it were conducted by applying the model on to a three cylinder neat methanol HSI engine. A glow surface temperature of 1273 K was found to be sufficient for ignition of methanol at 50% load while the distance between the glow plug and the injector affected the ignition delay. The sprays were ignited sequentially starting from the one closest the glow plug which resulted in extended combustion. Injecting methanol in double pulses reduced the Maximum Rate of Pressure Rise (MRPR).
Technical Paper

Model Based Evaluation of Parallel Hybrid Concepts for a Scooter for Reduced Fuel Consumption and Emissions

2022-03-29
2022-01-0665
Hybrid drive trains have to be cost effective for implementation in small two-wheelers especially scooters which constitute the majority of the market in several Asian countries. Integrating an electric motor with the conventional IC Engine drivetrain while retaining the CVT (Continuously Variable Transmission) is a cost-effective proposition. Such a development will need accounting for the behaviour of the engine, electrical drive and the belt driven CVT. A map-based engine model and a physics-based CVT model were developed in Simulink and validated with experimental data on the WMTC drive-cycle. A steady state map-based emission model and a motor model were also used. Simulations were performed on two parallel hybrid layouts namely P2 wherein the electric motor was placed before the CVT and P3 where the motor was placed in the final drive after the CVT while retaining the base 110 cc scooter powertrain.
X