Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Using Multi-Fidelity Turbulence Modelling Approaches to Analyse DrivAer External Aerodynamics

2023-04-11
2023-01-0016
Increasing fuel and electricity prices create high pressure to develop efficient external aerodynamics of road cars. At the same time, development cycles are getting shorter to meet changing customer preferences while physical testing capacities remain limited, creating a pressing need for fast and accurate turbulence models to predict aerodynamic performance. This paper introduces and discusses different turbulence modelling approaches beyond the well-known and established models used today in the industry. The RANS Lag Elliptic Blending (Lag EB) k − ϵ model, which enables highly accurate steady-state RANS, was chosen as the baseline approach. As a medium fidelity approach Scale-Resolving Hybrid (SRH) model was utilized, which modifies a RANS base model to produce a smooth transition between URANS and LES behavior. The Wall-Modelled LES (WMLES) method was chosen for high fidelity simulations.
Technical Paper

Prediction of Electric Vehicle Transmission Efficiency Using a New Thermally Coupled Lubrication Model

2022-04-13
2022-01-5026
We present a new method to predict the power losses in electric vehicle (EV) transmission systems using a thermally coupled gearbox efficiency model. Friction losses in gear teeth contacts are predicted using an iterative procedure to account for the thermal coupling between the tooth temperature, oil viscosity, film thickness, friction, and oil rheology during a gear mesh cycle. Crucially, the prediction of the evolution of the coefficient of friction (COF) along the path of contact incorporates measured lubricant rheological parameters as well as measured boundary friction. This allows the model to differentiate between nominally similar lubricants in terms of their impact on EV transmission efficiency. Bearing and gear churning losses are predicted using existing empirical relationships. The effects of EV motor cooling and heat transfers in the heat exchanger on oil temperature are considered.
Technical Paper

Active Limitation of Tire Wear and Emissions for Electrified Vehicles

2021-04-06
2021-01-0328
Eliminating toxic exhaust emissions, amongst them particulate matter (PM), is one of the driving factors behind the increasing use of electrified vehicles. However, it is frequently overseen that PM arise not only from combustion, but from non-exhaust traffic related causes as well; in particular from the vehicle brakes, tires and the road surface. Furthermore, as electrified vehicles weigh more and typically exhibit higher torques at low speeds, their non-exhaust emissions tend to be higher than for comparable conventional vehicles, especially those generated by tires. Fortunately, tire related emissions are directly related to tire wear, so that limiting tire wear can reduce these emissions as well. This can be accomplished by intelligently modulating the vehicle torque profile in real time, to limit the operation in conditions of higher tire wear.
Technical Paper

Impacts of particulate matter emissions from a highway on the neighboring population

2021-03-26
2020-36-0235
The road freight transport sector is one of the main responsible for the air pollution (as the case of particulate matter) and greenhouse gases emissions worldwide. Different types of fuel technologies have been developed in order to improve efficiency, reduce air pollution impacts, such as the case of liquefied natural gas (LNG) for heavy-duty vehicles. Many studies show the relationship between the effects of short and long-term exposure to particulate matter (PM) and, according to the World Health Organization (WHO), premature deaths worldwide as well as cardiorespiratory diseases in elderly population are related to this pollutant. In this context, this paper aims at evaluating the atmospheric dispersion of PM in a stretch of a highway (Anhanguera-Bandeirantes) in the São Paulo State in Brazil due to the road freight transport considering the use of diesel and LNG in heavy-duty vehicles and the impacts on human health. The software AERMOD designed by U.S.
Journal Article

LNG Fuel Differentiation: DME/LNG Blends for HPDI Engines

2020-09-15
2020-01-2078
With increased awareness and scrutiny of greenhouse gas (GHG) emissions, the heavy-duty truck industry is on the lookout for solutions that can maximize GHG savings, through either lowering fuel consumption and lowering methane slip. This paper focuses on whether it is possible to provide a differentiated Liquefied Natural Gas (LNG) that supports the further improvement of a High-Pressure Direct Injection (HPDI) Engine. Desired improvements from this LNG blend are the lowering or substitution of the pilot Diesel use of the current HPDI engine, the lowering of the raw exhaust gas methane concentration and any additional performance improvements. Sixty-five substances were identified that could potentially be blended into cryogenic methane thus creating a differentiated LNG fuel.
Technical Paper

Large-Scale Simulation of PEM Fuel Cell Using a “3D+1D” Model

2020-04-14
2020-01-0860
Nowadays, proton exchange membrane (PEM) fuel cell is widely seen as a promising energy conversion device especially for transportation application scenario because of its high efficiency, low operation temperature and nearly-zero road emission. Extensive modeling work have been done based on different dimensions during the past decades, including one-dimensional (1D), two-dimensional (2D), three-dimensional (3D) and intermediate combinations in between (e.g. “1+1D”). 1D model benefits from a rationally-chosen set of assumptions to obtain excellent calculation efficiency, yet at the cost of accuracy to some extent. In contrast, 3D model has great advantage over 1D model on acquiring more comprehensive information inside the fuel cell. For macro-scale modeling work, one compromise aiming to realize both acceptable computation speed and reasonable reflection of cell operation state is to simplify the membrane electrode assembly (MEA).
Technical Paper

On-Engine Performance Evaluation of a New-Concept Turbocharger Compressor Housing Design

2020-04-14
2020-01-1012
Following market demands for a niche balance between engine performance and legislation requirement, a new-concept compressor scroll has been designed for small to medium size passenger cars. The design adopts a slight deviation from the conventional method, thus resulting in broader surge margin and better efficiency at off-design region. This paper presents the performance evaluation of the new compressor scroll on the cold-flow gas-stand followed by the on-engine testing. The testing program focused on back-to-back comparison with the standard compressor scroll, as well as identifying on-engine operational regime with better brake specific fuel consumption (BSFC) and transient performance. A specially instrumented 1.6L gasoline engine was used for this study. The engine control unit configuration is kept constant in both the compressor testing.
Journal Article

Optimization of an Asymmetric Twin Scroll Volute Turbine under Pulsating Engine Boundary Conditions

2020-04-14
2020-01-0914
Future CO2 emission legislation requires the internal combustion engine to become more efficient than ever. Of great importance is the boosting system enabling down-sizing and down-speeding. However, the thermodynamic coupling of a reciprocating internal combustion engine and a turbocharger poses a great challenge to the turbine as pulsating admission conditions are imposed onto the turbocharger turbine. This paper presents a novel approach to a turbocharger turbine development process and outlines this process using the example of an asymmetric twin scroll turbocharger applied to a heavy duty truck engine application. In a first step, relevant operating points are defined taking into account fuel consumption on reference routes for the target application. These operation points are transferred into transient boundary conditions imposed on the turbine.
Journal Article

Optical Diagnostics Investigation on the Effect of Fuel Injection Timing on Partially Premixed Combustion Stratification and Soot Formation in a Single-Cylinder Optical Compression Ignition Engine

2019-09-09
2019-24-0028
The present work investigates the effect of fuel injection timing on combustion stratification and soot formation in an optically accessible, single cylinder light duty diesel engine. The engine operated under low load and low engine speed conditions, employing a single injection scheme. The conducted experiments considered three different injection timings, which promoted Partially Premixed Combustion (PPC) operation. The fuel quantity of the main injection was adjusted to maintain the same Indicated Mean Effective Pressure (IMEP) value among all cases considered. Findings were analysed via means of pressure trace and apparent heat transfer rate (AHTR) analyses, as well as a series of optical diagnostics techniques, namely flame natural luminosity, CH* and C2* chemiluminescence high-speed imaging, as well as planar Laser Induced Incandescence (pLII).
Technical Paper

Steady-State, Transient and WLTC Drive-Cycle Experimental Performance Comparison between Single-Scroll and Twin-Scroll Turbocharger Turbine

2019-04-02
2019-01-0327
The use of twin-scroll turbocharger turbine in automotive powertrain has been known for providing better transient performance over conventional single-scroll turbine. This has been accredited to the preservation of exhaust flow energy in the twin-scroll volute. In the current study, the performance comparison between a single and twin-scroll turbine has been made experimentally on a 1.5L passenger car gasoline engine. The uniqueness of the current study is that nearly identical engine hardware has been used for both the single and twin-scroll turbine volutes. This includes the intake and exhaust manifold geometry, turbocharger compressor, turbine rotor and volute scroll A/R variation trend over circumferential location. On top of that, the steady-state engine performance with both the volutes, has also been tuned to have matching brake torque.
Technical Paper

Mechanism Analysis on the Effect of Fuel Properties on Knocking Performance at Boosted Conditions

2019-01-15
2019-01-0035
In recent years, boosted and downsized engines have gained much attention as a promising technology to improve fuel economy; however, knocking is a common issue of such engines that requires attention. To understand the knocking phenomenon under downsized and boosted engine conditions deeply, fuels with different Research Octane Number (RON) and Motor Octane Number (MON) were prepared, and the knocking performances of these fuels were evaluated using a single cylinder engine, operated under a variety of conditions. Experimental results showed that the knocking performance at boosted conditions depend on both RON and MON. While higher RON showed better anti-knocking performance, lower MON showed better anti-knocking performance. Furthermore, the tendency for a reduced MON to be beneficial became stronger at lower engine speeds and higher boost pressures, in agreement with previously published modelling work.
Technical Paper

Adaptive Turbo Matching: Radial Turbine Design Optimization through 1D Engine Simulations with Meanline Model in-the-Loop

2018-04-03
2018-01-0974
Turbocharging has become the favored approach for downsizing internal combustion engines to reduce fuel consumption and CO2 emissions, without sacrificing performance. Matching a turbocharger to an engine requires a balance of various design variables in order to meet the desired performance. Once an initial selection of potential compressor and turbine options is made, corresponding performance maps are evaluated in 1D engine cycle simulations to down-select the best combination. This is the conventional matching procedure used in industry and is ‘passive’ since it relies on measured maps, thus only existing designs may be evaluated. In other words, turbine characteristics cannot be changed during matching so as to explore the effect of design adjustments. Instead, this paper presents an ‘adaptive’ matching methodology for the turbocharger turbine.
Technical Paper

Octane Response of a Highly Boosted Direct Injection Spark Ignition Engine at Different Compression Ratios

2018-04-03
2018-01-0269
Stringent regulations on fuel economy have driven major innovative changes in the internal combustion engine design. (E.g. CAFE fuel economy standards of 54.5 mpg by 2025 in the U.S) Vehicle manufacturers have implemented engine infrastructure changes such as downsizing, direct injection, higher compression ratios and turbo-charging/super-charging to achieve higher engine efficiencies. Fuel properties therefore, have to align with these engine changes in order to fully exploit the possible benefits. Fuel octane number is a key metric that enables high fuel efficiency in an engine. Greater resistance to auto-ignition (knock) of the fuel/air mixture allows engines to be operated at a higher compression ratio for a given quantity of intake charge without severely retarding the spark timing resulting in a greater torque per mass of fuel burnt. This attribute makes a high octane fuel a favorable hydrocarbon choice for modern high efficiency engines that aim for higher fuel economy.
Technical Paper

Effects of Valve Deactivation on Thermal Efficiency in a Direct Injection Spark Ignition Engine under Dilute Conditions

2018-04-03
2018-01-0892
Reported in the current paper is a study into the cycle efficiency effects of utilising a complex valvetrain mechanism in order to generate variable in-cylinder charge motion and therefore alter the dilution tolerance of a Direct Injection Spark Ignition (DISI) engine. A Jaguar Land Rover Single Cylinder Research Engine (SCRE) was operated at a number of engine speeds and loads with the dilution fraction varied accordingly (excess air (lean), external Exhaust Gas Residuals (EGR) or some combination of both). For each engine speed, load and dilution fraction, the engine was operated with either both intake valves fully open - Dual Valve Actuation (DVA) - or one valve completely closed - Single Valve Actuation (SVA) mode. The engine was operated in DVA and SVA modes with EGR fractions up to 20% with the excess air dilution (Lambda) increased (to approximately 1.8) until combustion stability was duly compromised.
Technical Paper

The Sensitivity of Transient Response Prediction of a Turbocharged Diesel Engine to Turbine Map Extrapolation

2017-09-04
2017-24-0019
Mandated pollutant emission levels are shifting light-duty vehicles towards hybrid and electric powertrains. Heavy-duty applications, on the other hand, will continue to rely on internal combustion engines for the foreseeable future. Hence there remain clear environmental and economic reasons to further decrease IC engine emissions. Turbocharged diesels are the mainstay prime mover for heavy-duty vehicles and industrial machines, and transient performance is integral to maximizing productivity, while minimizing work cycle fuel consumption and CO2 emissions. 1D engine simulation tools are commonplace for “virtual” performance development, saving time and cost, and enabling product and emissions legislation cycles to be met. A known limitation however, is the predictive capability of the turbocharger turbine sub-model in these tools.
Journal Article

A Comparison of Experimental and Modeled Velocity in Gasoline Direct-Injection Sprays with Plume Interaction and Collapse

2017-03-28
2017-01-0837
Modeling plume interaction and collapse for direct-injection gasoline sprays is important because of its impact on fuel-air mixing and engine performance. Nevertheless, the aerodynamic interaction between plumes and the complicated two-phase coupling of the evaporating spray has shown to be notoriously difficult to predict. With the availability of high-speed (100 kHz) Particle Image Velocimetry (PIV) experimental data, we compare velocity field predictions between plumes to observe the full temporal evolution leading up to plume merging and complete spray collapse. The target “Spray G” operating conditions of the Engine Combustion Network (ECN) is the focus of the work, including parametric variations in ambient gas temperature. We apply both LES and RANS spray models in different CFD platforms, outlining features of the spray that are most critical to model in order to predict the correct aerodynamics and fuel-air mixing.
Journal Article

Injector Fouling and Its Impact on Engine Emissions and Spray Characteristics in Gasoline Direct Injection Engines

2017-03-28
2017-01-0808
In Gasoline Direct Injection engines, direct exposure of the injector to the flame can cause combustion products to accumulate on the nozzle, which can result in increased particulate emissions. This research observes the impact of injector fouling on particulate emissions and the associated injector spray pattern and shows how both can be reversed by utilising fuel detergency. For this purpose multi-hole injectors were deliberately fouled in a four-cylinder test engine with two different base fuels. During a four hour injector fouling cycle particulate numbers (PN) increased by up to two orders of magnitude. The drift could be reversed by switching to a fuel blend that contained a detergent additive. In addition, it was possible to completely avoid any PN increase, when the detergent containing fuel was used from the beginning of the test. Microscopy showed that increased injector fouling coincided with increased particulate emissions.
Technical Paper

Evaluation Between Engine Stop/Start and Cylinder Deactivation Technologies Under Southeast Asia Urban Driving Condition

2017-03-28
2017-01-0986
Engine stop/start and cylinder deactivation are increasingly in use to improve fuel consumption of internal combustion engine in passenger cars. The stop/start technology switches off the engine to whenever the vehicle is at a stand-still, typically in a highly-congested area of an urban driving. The inherent issue with the implementation of stop/start technology in Southeast Asia, with tropical climate such as Malaysia, is the constant demand for the air-conditioning system. This inevitably reduces the duration of engine switch-off when the vehicle at stop and consequently nullifying the benefit of the stop/start system. On the other hand, cylinder deactivation technology improves the fuel consumption at certain conditions during low to medium vehicle speeds, when the engine is at part load operation only. This study evaluates the fuel economy benefit between the stop/start and cylinder deactivation technologies for the actual Kuala Lumpur urban driving conditions in Malaysia.
Technical Paper

Octane Requirement and Efficiency in a Fleet of Modern Vehicles

2017-03-28
2017-01-0810
In light of increasingly stringent CO2 emission targets, Original Equipment Manufacturers (OEM) have been driven to develop engines which deliver improved combustion efficiency and reduce energy losses. In spark ignition engines one strategy which can be used to reach this goal is the full utilization of fuel octane number. Octane number is the fuel´s knock resistance and is characterized as research octane number (RON) and motor octane number (MON). Engine knock is caused by the undesired self-ignition of the fuel air mixture ahead of the flame front initiated by the spark. It leads to pressure fluctuations that can severely damage the engine. Modern vehicles utilize different strategies to avoid knock. One extreme strategy assumes a weak fuel quality and, to protect the engine, retards the spark timing at the expense of combustion efficiency. The other extreme carefully detects knock in every engine cycle and retards the spark timing only when knock is detected.
Technical Paper

Effect of Octane Number on the Performance of Euro 5 and Euro 6 Gasoline Passenger Cars

2017-03-28
2017-01-0811
Research Octane Number (RON) and Motor Octane Number (MON) are used to describe gasoline combustion which describe antiknock performance under different conditions. Recent literature suggests that MON is less important than RON in modern cars and a relaxation in the MON specification could improve vehicle performance. At the same time, for the same octane number change, increasing RON appears to provide more benefit to engine power and acceleration than reducing MON. Some workers have advocated the use of an octane index (OI) which incorporates both parameters instead of either RON or MON to give an indication of gasoline knock resistance. Previous Concawe work investigated the effect of RON and MON on the power and acceleration performance of two Euro 4 gasoline passenger cars during an especially-designed acceleration test cycle.
X