Refine Your Search

Topic

Search Results

Technical Paper

Split Ring Resonator-based Metamaterial with Total Bandgap for Reducing NVH in Electric Vehicles

2024-04-09
2024-01-2348
We propose a novel Split Ring Resonator (SRR) metamaterial capable of achieving a total (or complete) bandgap in the material’s band structure, thereby reflecting airborne and structure-borne noise in a targeted frequency range. Electric Vehicles (EVs) experience tonal excitation arising from switching frequencies associated with motors and inverters, which can significantly affect occupant perception of vehicle quality. Recently proposed metamaterial designs reflect airborne noise and structure-borne transverse waves over a band of frequencies, but do not address structure-borne longitudinal waves in the same band. To achieve isolation of acoustic, transverse, and longitudinal elastic waves associated with tonal frequencies, we propose a metamaterial super cell with transverse and longitudinal resonant frequencies falling in a total bandgap. We calculate the resonant frequencies and corresponding mode shapes using finite element (FE) modal analysis.
Technical Paper

Investigation of Real-World Crash Using an Accident Reconstruction Methodology Employing Crash Test Data

2024-01-16
2024-26-0288
Automotive crash data analysis and reconstruction is vital for ensuring automotive safety. The objective of vehicle crash reconstruction is to determine the vehicle's motion before, during, and after the crash, as well as the impact on occupants in terms of injuries. Simulation approaches, such as PC CrashTM, have been developed to understand pre-crash and post-crash vehicle motion, rather than the crash phase behavior. Over the past few decades, crash phase simulations have utilized vehicle finite element models. While multibody simulation tools are suitable for crash simulations, they often require detailed crash test data to accurately capture vehicle behavior, which is not always readily available. This paper proposes a solution to this limitation by incorporating crash test data from databases, such as NHTSA, Global NCAP, consumer rating reports, and videos, along with a multibody-based approach, to conduct crash phase simulations.
Technical Paper

Application of Extended Messinger Models to Complex Geometries

2020-03-10
2020-01-0022
Since, ice accretion can significantly degrade the performance and the stability of an airborne vehicle, it is imperative to be able to model it accurately. While ice accretion studies have been performed on airplane wings and helicopter blades in abundance, there are few that attempt to model the process on more complex geometries such as fuselages. This paper proposes a methodology that extends an existing in-house Extended Messinger solver to complex geometries by introducing the capability to work with unstructured grids and carry out spatial surface streamwise marching. For the work presented here commercial solvers such as STAR-CCM+ and ANSYS Fluent are used for the flow field and droplet dispersed phase computations. The ice accretion is carried out using an in-house icing solver called GT-ICE. The predictions by GT-ICE are compared to available experimental data, or to predictions by other solvers such as LEWICE and STAR-CCM+.
Journal Article

Performance of Isolated UAV Rotors at Low Reynolds Number

2020-03-10
2020-01-0046
Vertical takeoff and landing vehicle platforms with many small rotors are gaining importance for small UAVs as well as distributed electric propulsion for larger vehicles. To predict vehicle performance, it must be possible to gauge interaction effects. These rotors operate in the less-known regime of low Reynolds number, with different blade geometry. As a first step, two identical commercial UAV rotors from a flight test program are studied in isolation, experimentally and computationally. Load measurements were performed in Georgia Tech’s 2.13 m × 2.74 m wind tunnel. Simulations were done using the RotCFD solver which uses a Navier-Stokes wake computation along with rotor-disc loads calculation using low-Reynolds number blade section data. It is found that in hover, small rotors available in the market vary noticeably in performance at low rotor speeds, the data converging at higher RPM and Reynolds number.
Journal Article

Time-Varying Loads of Co-Axial Rotor Blade Crossings

2017-09-19
2017-01-2024
The blade crossing event of a coaxial counter-rotating rotor is a potential source of noise and impulsive blade loads. Blade crossings occur many times during each rotor revolution. In previous research by the authors, this phenomenon was analyzed by simulating two airfoils passing each other at specified speeds and vertical separation distances, using the compressible Navier-Stokes solver OVERFLOW. The simulations explored mutual aerodynamic interactions associated with thickness, circulation, and compressibility effects. Results revealed the complex nature of the aerodynamic impulses generated by upper/lower airfoil interactions. In this paper, the coaxial rotor system is simulated using two trains of airfoils, vertically offset, and traveling in opposite directions. The simulation represents multiple blade crossings in a rotor revolution by specifying horizontal distances between each airfoil in the train based on the circumferential distance between blade tips.
Technical Paper

The Flying Carpet: Aerodynamic High-Altitude Solar Reflector Design Study

2017-09-19
2017-01-2026
Our concept studies indicate that a set of reflectors floated in the upper atmosphere can efficiently reduce radiant forcing into the atmosphere. The cost of reducing the radiant forcing sufficiently to reverse the current rate of Global Warming, is well within reach of global financial resources. This paper summarizes the overall concept and focuses on one of the reflector concepts, the Flying Carpet. The basic element of this reflector array is a rigidized reflector sheet towed behind and above a solar-powered, distributed electric-propelled flying wing. The vehicle rises above 30,480 m (100,000 ft) in the daytime by solar power. At night, the very low wing loading of the sheets enables the system to stay well above the controlled airspace ceiling of 18,288 m (60,000 ft). The concept study results are summarized before going into technical issues in implementation. Flag instability is studied in initial wind tunnel experiments.
Technical Paper

Tradeoff Study of High Altitude Solar Reflector Concepts

2017-09-19
2017-01-2143
A direct solution to Global Warming would be to reflect a part of sunlight back into Space. A system tradeoff study is being developed with three of the concepts that are being evaluated as long-endurance high-altitude reflectors. The first concept is a high aspect ratio solar powered flying wing towing reflector sheets. This concept is named “Flying Carpet”. Second is a centrifugally stretched high altitude solar reflector (CSHASR). The CSHASR has 4 rotors made of reflector sheets with a hub stretching to 60 percent of the radius, held together by an ultralight quad-rotor structure. Each rotor is powered by a solar-electric motor. A variation on this concept, forced by nighttime descent rate concerns, is powered by tip-mounted solar panels and propellers with some battery storage augmenting rotational inertia as well as energy storage. The third concept is an Aerostatically Balanced Reflector (ABR) sheet, held up by hydrogen balloons.
Technical Paper

Transient Fatigue Analysis of Exhaust System Mounting Brackets for Commercial Vehicle - Correlation

2017-03-28
2017-01-1333
In commercial vehicles, exhaust system is normally mounted on frame side members (FSM) using hanger brackets. These exhaust system hanger brackets are tested either as part of full vehicle durability testing or as a subsystem in a rig testing. During initial phases of product development cycle, the hanger brackets are validated for their durability in rig level testing using time domain signals acquired from mule vehicle. These signals are then used in uni-axial, bi-axial or tri-axial rig facilities based on their severity and the availability of test rigs. This paper depicts the simulation method employed to replicate the bi-directional rig testing through modal transient analysis. Finite Element Method (FEM) is applied for numerical analysis of exhaust system assembly using MSC/Nastran software with the inclusion of rubber isolator modeling, meshing guidelines etc. Finite Element Analysis (FEA) results are in good agreement with rig level test results.
Technical Paper

Pressure Field Evolution on Rotor Blades at High Advance Ratio

2016-09-20
2016-01-2010
The design of advanced rotorcraft requires knowledge of the flowfield and loads on the rotor blade at extreme advance ratios (ratios of the forward flight speed to rotor tip speed). In this domain, strong vortices form below the rotor, and their evolution has a sharp influence on the aero-dynamics loads experienced by the rotor, particularly the loads experienced at pitch links. To understand the load distribution, the surface pressure distribution must be captured. This has posed a severe problem in wind tunnel experiments. In our experiments, a 2-bladed teetering rotor with collective and cyclic pitch controls is used in a low speed subsonic wind tunnel in reverse flow. Stereoscopic particle image velocimetry is used to measure the three component spatial velocity field. Measurement accuracy is now adequate for velocity data, and can be converted to pressure both at and away from the blade surface.
Technical Paper

Coaxial Rotor Flow Phenomena in Forward Flight

2016-09-20
2016-01-2009
Coaxial rotors are finding use in advanced rotorcraft concepts. Combined with lift offset rotor technology, they offer a solution to the problems of dynamic stall and reverse flow that often limit single rotor forward flight speeds. In addition, coaxial rotorcraft systems do not need a tail rotor, a major boon during operation in confined areas. However, the operation of two counter-rotating rotors in close proximity generates many possible aerodynamic interactions between rotor blades, blades and vortices, and between vortices. With two rotors, the parameter design space is very large, and requires efficient computations as well as basic experiments to explore aerodynamics of a coaxial rotor and the effects on performance, loads, and acoustics.
Technical Paper

Yaw Effects on the Narrowband Spectra Above a Delta Wing in Turbulent Flow

2016-09-20
2016-01-2056
Combat aircraft maneuvering at high angles of attack or in landing approach are likely to encounter conditions where the flow over the swept wings is yawed. This paper examines the effect of yaw on the spectra of turbulence above and aft of the wing, in the region where fins and control surfaces are located. Prior work has shown the occurrence of narrowband velocity fluctuations in this region for most combat aircraft models, including those with twin fins. Fin vibration and damage has been traced to excitation by such narrowband fluctuations. The narrowband fluctuations themselves have been traced to the wing surface. The issue in this paper is the effect of yaw on these fluctuations, as well as on the aerodynamic loads on a wing, without including the perturbations due to the airframe.
Technical Paper

Stress Development Analysis within Composite Laminate for Different Layup Orientations

2016-02-01
2016-28-0188
Composite structures play a vital role in the automobile industry. Use of composites like CFRPs in automobiles poses various problems to engineers. CFRP components are not simple to model in comparison to traditional engineering materials like aluminium, steel etc. One of the main reason is that the composite materials generally do not behave in an isotropic manner but rather behave in an anisotropic or orthotropic manner. These anisotropic and orthotropic mechanical behaviors are more difficult to predict as compared to isotropic behaviors. This problem is solved using finite element analysis (FEA) packages to model complex composite material and predict their behavior. The paper discusses about the propagation of stresses within the composite laminates using FEA in Abaqus for different lamina stacking directions. The results obtained are verified using Theoretical Analysis in MATLAB.
Technical Paper

Stress Development Analysis within Composite Laminate for Different Layup Orientations

2016-02-01
2016-28-0183
Composite structures play a vital role in the automobile industry. Use of composites like CFRPs in automobiles poses various problems to engineers. CFRP components are not simple to model in comparison to traditional engineering materials like aluminium, steel etc. One of the main reason is that the composite materials generally do not behave in an isotropic manner but rather behave in an anisotropic or orthotropic manner. These anisotropic and orthotropic mechanical behaviors are more difficult to predict as compared to isotropic behaviors. This problem is solved using finite element analysis (FEA) packages to model complex composite material and predict their behavior. The paper discusses about the propagation of stresses within the composite laminates using FEA in Abaqus for different lamina stacking directions. The results obtained are verified using Theoretical Analysis in MATLAB.
Technical Paper

Narrow-Band Excitation of Vortex Flows

2015-09-15
2015-01-2572
At high angles of attack, the flow over a swept wing generates counter-rotating vortical features. These features can amplify into a nearly sinusoidal fluctuation of velocity components. The result is excitation of twin-fin buffeting, driven at clearly predictable frequencies, or at nearby lock-in frequencies of the fin structure. This is distinct from the traditional model of fin buffeting as a structural resonant response to broadband, large-amplitude excitation from vortex core bursting. Hot-film anemometry was conducted ahead of the vertical fins of a 1:48 scale model of the F-35B aircraft, in the angle of attack range between 18 and 30 degrees. Auto spectral density functions from these data showed a sharp spectral peak in the flow ahead of the fins for angles of attack between 20 and 28 degrees. Small fences placed on the top surface of the wing eliminated the spectral peak, leaving only a broadband turbulent spectrum.
Technical Paper

Slung Load Divergence Speed Predictions for Vehicle Shapes

2015-09-15
2015-01-2570
Loads slung under aircraft can go into divergent oscillations coupling multiple degrees of freedom. Predicting the highest safe flight speed for a vehicle-load combination is a critical challenge, both for military missions over hostile areas, and for evacuation/rescue operations. The primary difficulty was that of obtaining well-resolved airload maps covering the arbitrary attitudes that a slung load may take. High speed rotorcraft using tilting rotors and co-axial rotors can fly at speeds that imply high dynamic pressure, making aerodynamic loads significant even on very dense loads such as armored vehicles, artillery weapons, and ammunition. The Continuous Rotation method demonstrated in our prior work enables routine prediction of divergence speeds. We build on prior work to explore the prediction of divergence speed for practical configurations such as military vehicles, which often have complex bluff body shapes.
Journal Article

Interval Finite Element Analysis of Structural Dynamic Problems

2015-04-14
2015-01-0484
We analyze the frequency response of structural dynamic systems with uncertainties in load and material properties. We introduce uncertainties in the system as interval numbers, and use Interval Finite Element Method (IFEM). Overestimation due to dependency is reduced using a new decomposition for the stiffness and mass matrices, as well as for the nodal equivalent load. In addition, primary and derived quantities are simultaneously obtained by means of Lagrangian multipliers that are introduced in the total energy of the system. The obtained interval equations are solved by means of a new variant of the iterative enclosure method resulting in guaranteed enclosures of relevant quantities. Several numerical examples show the accuracy and efficiency of the new formulation.
Technical Paper

Active Yaw Control of a Vehicle using a Fuzzy Logic Algorithm

2012-04-16
2012-01-0229
Yaw rate of a vehicle is highly influenced by the lateral forces generated at the tire contact patch to attain the desired lateral acceleration, and/or by external disturbances resulting from factors such as crosswinds, flat tire or, split-μ braking. The presence of the latter and the insufficiency of the former may lead to undesired yaw motion of a vehicle. This paper proposes a steer-by-wire system based on fuzzy logic as yaw-stability controller for a four-wheeled road vehicle with active front steering. The dynamics governing the yaw behavior of the vehicle has been modeled in MATLAB/Simulink. The fuzzy controller receives the yaw rate error of the vehicle and the steering signal given by the driver as inputs and generates an additional steering angle as output which provides the corrective yaw moment.
Journal Article

Acoustic Analysis of Exhaust Muffler of a 4-Stroke Engine

2009-06-15
2009-01-1980
A one-dimensional analysis was performed to analyze a three-pass muffler with perforated tubes for Transmission Loss, using numerical decoupling approach. Effect of mean flow on transmission loss inside the muffler was studied. To account for the three-dimensional nature of acoustic waves at higher frequencies, a three dimensional finite element analysis was done using SYSNOISE. The Transmission loss results of the three-dimensional analysis were compared with those of one-dimensional analysis for no flow case and shown to agree reasonably for lower frequency range.
Technical Paper

A 6 Sigma Framework for the Design of Flatfish Type Autonomous Underwater Vehicle (AUV)

2009-04-20
2009-01-1190
Hydrodynamic parameters play a major role in the dynamics and control of Autonomous Underwater Vehicles (AUV). The performance of an AUV is dependent on the parameter variations and a proper understanding of these parametric influences is essential for the design, modelling and control of high performance AUVs. In this paper, a six sigma framework for the sensitivity analysis of a flatfish type AUV is presented. Robust design techniques such as Taguchi’s design method and statistical analysis tools such as Pareto-ANOVA, and ANOVA are used to identify the hydrodynamic parameters influencing the dynamic performance of an AUV. In the initial study, it is found that when the vehicle commanded in forward direction, it is in bow down configuration which is unacceptable for AUV motion. This is because of the vehicle buoyancy and shape of the vehicle. So the sensitivity analysis of pitch angle variation is studied by using robust design techniques.
Technical Paper

Non-Reacting and Reacting Flow Analysis in an Aero-Engine Gas Turbine Combustor Using CFD

2007-04-16
2007-01-0916
A gas turbine combustion system is an embodiment of all complexities that engineering equipment can have. The flow is three dimensional, swirling, turbulent, two phase and reacting. The design and development of combustors, until recent past, was an art than science. If one takes the route of development through experiments, it is quite time consuming and costly. Compared to the other two components viz., compressor and turbine, the combustion system is not yet completely amenable to mathematical analysis. A gas turbine combustor is both geometrically and fluid dynamically quite complex. The major challenge a combustion engineer faces is the space constraint. As the combustion chamber is sandwiched between compressor and turbine there is a limitation on the available space. The critical design aspect is in facing the aerodynamic challenges with minimum pressure drop. Accurate mathematical analysis of such a system is next to impossible.
X