Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Experimental-Based Laminar Flame Speed Approximation Formulas of Efficiency-Optimized Biofuels for SI-Engine Modeling

2022-09-16
2022-24-0032
The transition towards sustainable mobility encourages research into biofuels for use in internal combustion engines. For these alternative energy carriers, high-fidelity experimental data of flame speeds influenced by pressure, temperature, and air-fuel equivalence ratio under engine-relevant conditions are required to support the development of robust combustion models for spark-ignition engines. E.g., physicochemical-based approximation formulas adjusted to the fuel provide similar accuracy as high fidelity chemical kinetic model calculations at a fraction of the computational cost and can be easily adopted in engine simulation codes. In the present study, a workflow to enable predictive combustion engine modeling is applied first for a gasoline reference fuel and two biofuel blends recently proposed by Dahmen and Marquardt [Energy Fuels, 2017].
Technical Paper

Optical Spray Investigations on OME3-5 in a Constant Volume High Pressure Chamber

2019-10-07
2019-24-0234
Oxygenated fuels such as polyoxymethylene dimethyl ethers (OME) offer a chance to significantly decrease emissions while switching to renewable fuels. However, compared to conventional diesel fuel, they have lower heating values and different evaporation behaviors which lead to differences in spray, mixture formation as well as ignition delay. In order to determine the mixture formation characteristics and the combustion behavior of neat OME3-5, optical investigations have been carried out in a high-pressure-chamber using shadowgraphy, mie-scatterlight and OH-radiation recordings. Liquid penetration length, gaseous penetration length, lift off length, spray cone angle and ignition delay have been determined and compared to those measured with diesel-fuel over a variety of pressures, temperatures, rail pressures and injection durations.
Technical Paper

Experimental and Numerical Investigation of the Maximum Pressure Rise Rate for an LTC Concept in a Single Cylinder CI Engine

2019-09-09
2019-24-0023
In the foreseeable future, the transportation sector will continue to rely on internal combustion engines. Therefore, reduction of engine-out emissions and increase in engine efficiency are important goals to meet future legislative regulations and restricted fuel resources. One viable option, which provides lower peak temperatures and increased mixture homogeneity and thus simultaneously reduces nitric oxide as well as soot, is a low-temperature combustion (LTC) concept. However, this might result in an increase of unburnt hydrocarbon, carbon monoxide, and combustion noise due to early combustion phasing and lower engine efficiency. Various studies show that these drawbacks can be compensated by advanced injection strategies, e.g. by employing multiple injections. The aim of this work is to identify the optimum injection strategy, which enables a wide range of engine operating points in LTC mode with reduced engine-out emissions.
Journal Article

The Oxidation Potential Number: An Index to Evaluate Inherent Soot Reduction in D.I. Diesel Spray Plumes

2015-09-01
2015-01-1934
A new index to evaluate the inherent soot reduction in a diesel-like spray plume is proposed in this study. The index is named “Oxidation Potential Number” and was derived with the help of a computational fluid dynamics (CFD) software. C8 - C16 n-alkanes, 1-alcohols and di-n-ethers were studied with the help of this index over four part load engine operating conditions, representative of a C-class diesel vehicle. The CFD modelling results have shown that C8 molecules feature a higher potentiality to reduce the soot. Thus, C8 molecules were tested in a single cylinder diesel engine over the same operating conditions. In conclusion, the proposed index is compared with the soot engine out emission.
Technical Paper

2-Butanone Laminar Burning Velocities - Experimental and Kinetic Modelling Study

2015-09-01
2015-01-1956
2-Butanone (C4H8O) is a promising alternative fuel candidate as a pure as well as a blend component for substitution in standard gasoline fuels. It can be produced by the dehydrogenation of 2-butanol. To describe 2-butanone's basic combustion behaviour, it is important to investigate key physical properties such as the laminar burning velocity. The laminar burning velocity serves on the one hand side as a parameter to validate detailed chemical kinetic models. On the other hand, especially for engine simulations, various combustion models have been introduced, which rely on the laminar burning velocity as the physical quantity describing the progress of chemical reactions, diffusion, and heat conduction. Hence, well validated models for the prediction of laminar burning velocities are needed. New experimental laminar burning velocity data, acquired in a high pressure spherical combustion vessel, are presented for 1 atm and 5 bar at temperatures of 373 K and 423 K.
Journal Article

Mixture-Formation Analysis by PLIF in an HSDI Diesel Engine Using C8-Oxygenates as the Fuel

2015-04-14
2015-01-0960
With increasing interest in new biofuel candidates, 1-octanol and di-n-butylether (DNBE) were presented in recent studies. Although these molecular species are isomers, their properties are substantially different. In contrast to DNBE, 1-octanol is almost a gasoline-type fuel in terms of its auto-ignition quality. Thus, there are problems associated with engine start-up for neat 1-octanol. In order to find a suitable glow-plug position, mixture formation is studied in the cylinder under almost idle operating conditions in the present work. This is conducted by planar laser-induced fluorescence in a high-speed direct-injection optical diesel engine. The investigated C8-oxygenates are also significantly different in terms of their evaporation characteristics. Thus, in-cylinder mixture formation of these two species is compared in this work, allowing conclusions on combustion behavior and exhaust emissions.
Journal Article

Probing Species Formed by Pilot Injection During Re-Compression in a Controlled Auto-Ignition Engine by H2CO LIF and Chemiluminescence Imaging

2014-04-01
2014-01-1275
Pilot injection (PI) during the negative-valve-overlap (NVO) period is one method to improve control of combustion in gasoline controlled auto-ignition engines. This is generally attributed to both chemical and thermal effects. However, there are little experimental data on active species formed by the combusting PI and their effect on main combustion in real engines. Thus, it is the objective of the current study to apply and assess optical in-cylinder diagnostics for these species. Firstly, the occurrence and nature of combustion during the NVO period is investigated by spectrally-resolved multi-species flame luminescence measurements. OH*, CH*, HCO*, CO-continuum chemiluminescence, and soot luminosity are recorded. Secondly, spectrally-, spatially-, and cycle-resolved laser-induced fluorescence measurements of formaldehyde are conducted. It is attempted to find a cycle-resolved measure of the chemical effect of PI.
Technical Paper

Modelling a Gasoline Compression Ignition (GCI) Engine Concept

2014-04-01
2014-01-1305
Future engines and vehicles will be required to reduce both regulated and CO2 emissions. To achieve this performance, they will be configured with advanced hardware and engine control technology that will enable their operation on a broader range of fuel properties than today. Previous work has shown that an advanced compression ignition bench engine can operate successfully on a European market gasoline over a range of speed/load conditions while achieving diesel-like engine efficiency and acceptable regulated emissions and noise levels. Stable Gasoline CI (GCI) combustion using a European market gasoline was achieved at high to medium engine loads but combustion at lower loads was very sensitive to EGR rates, leading to longer ignition delays and a steep cylinder pressure rise.
Journal Article

Estimation of Secondary Mass Changes in Vehicle Design

2013-04-08
2013-01-0655
It is well known that an unplanned component mass increase during vehicle design creates a ripple effect of changes throughout the vehicle subsystems, which require resizing for the additional mass. This in turn, increases overall vehicle mass. And the opposite is true in vehicle mass reduction where subsystem resizing is necessary to account for an initial mass reduction enabled, for example, by a new technology. These secondary mass changes can be significant and must be considered in the mass budgeting process due to their importance to fuel consumption and greenhouse gas emission assessments. Secondary mass reduction may be modeled using subsystem mass influence coefficients-the incremental change in subsystem mass for a unit change in gross vehicle mass. This paper focuses on means to estimate influence coefficients using two methods: Analytical and Regression.
Journal Article

Quantitative Fuel-Air-Mixing Measurements in Diesel-Like Sprays Emanating from Convergent and Divergent Multi-Layer Nozzles

2012-04-16
2012-01-0464
It is the objective of this work to characterize mixture formation in the sprays emanating from Multi-Layer (ML) nozzles under approximately engine-like conditions by quantitative, spatially, and temporally resolved fuel-air ratio and temperature measurements. ML nozzles are cluster nozzles which have more than one circle of orifices. They were introduced previously, in order to overcome the limitations of conventional nozzles. In particular, the ML design yields the potential of variable spray interaction, so that mixture formation could be controlled according to the operating condition. In general, it was also a primary aim of the cluster-nozzle concepts to combine the enhanced atomization and pre-mixing of small nozzle holes with the longer spray penetration lengths of large holes. The applied diagnostic, which is based on 1d spontaneous Raman scattering, yields the quantitative stoichiometric ratio and the temperature in the vapor phase.
Technical Paper

Exhaust Temperature Management for Diesel Engines Assessment of Engine Concepts and Calibration Strategies with Regard to Fuel Penalty

2011-09-11
2011-24-0176
Both, the continuous strengthening of the exhaust emission legislation and the striving for a substantial reduction of carbon dioxide output in the traffic sector depict substantial requirements for the development of future diesel engines. These engines will comprise not only the mandatory diesel oxidation catalyst (DOC) and particulate filter DPF but a NOx aftertreatment system as well - at least for heavier vehicles. The oxidation catalysts as well as currently available NOx aftertreatment technologies, i.e., LNT and SCR, rely on sufficient exhaust gas temperatures to achieve a proper conversion. This is getting more and more critical due to the fact that today's and future measures for CO₂ reduction will result in further decrease of engine-out temperatures. Additionally this development has to be considered in the light of further engine electrification and hybridization scenarios.
Technical Paper

Closed Loop Combustion Control - Enabler of Future Refined Engine Performance Regarding Power, Efficiency, Emissions & NVH under Stringent Governmental Regulations

2011-09-11
2011-24-0171
Both, the continuous strengthening of the exhaust emission legislation and the striving for a substantial reduction of the carbon dioxide output in the traffic sector depict substantial requirements for the global automotive industry and especially for the engine manufacturers. From the multiplicity of possible approaches and strategies for clear compliance with these demands, engine internal measures offer a large and, eventually more important, very economical potential. For example, the achievements in fuel injection technology are a measure which in the last years has contributed significantly to a notable reduction of the emissions of the modern DI Diesel engines at favorable fuel efficiency. Besides the application of modern fuel injection technology, the linked combustion control (Closed Loop Combustion Control) opens possibilities for a further optimization of the combustion process.
Journal Article

Butanol Blending - a Promising Approach to Enhance the Thermodynamic Potential of Gasoline - Part 1

2011-08-30
2011-01-1990
Blending gasoline with oxygenates like ethanol, MTBE or ETBE has a proven potential to increase the thermodynamic efficiency by enhancing knock resistance. The present research focuses on assessing the capability of a 2- and tert-butanol mixture as a possible alternative to state-of-the-art oxygenates. The butanol mixture was blended into a non-oxygenated reference gasoline with a research octane number (RON) of 97. The butanol blending ratios were 15% and 30% by mass. Both the thermodynamic potential and the impact on emissions were investigated. Tests are performed on a highly boosted single-cylinder gasoline engine with high load capability and a direct injecting fuel system using a solenoid-actuated multi-hole injector. The engine is equipped with both intake and exhaust cam phasers. The engine has been chosen for the fuel investigation, as it represents the SI technology with a strongly increasing market share.
Journal Article

Analysis of the Effect of Bio-Fuels on the Combustion in a Downsized DI SI Engine

2011-08-30
2011-01-1991
In this study the fuel influence of several bio-fuel candidates on homogeneous engine combustion systems with direct injection is investigated. The results reveal Ethanol and 2-Butanol as the two most knock-resistant fuels. Hence these two fuels enable the highest efficiency improvements versus RON95 fuel ranging from 3.6% - 12.7% for Ethanol as a result of a compression ratio increase of 5 units. Tetrahydro-2-methylfuran has a worse knock resistance and a decreased thermal efficiency due to the required reduction in compression ratio by 1.5 units. The enleanment capability is similar among all fuels thus they pose no improvements for homogeneous lean burn combustion systems despite a significant reduction in NOX emissions for the alcohol fuels as a consequence of lower combustion temperatures.
Technical Paper

Future Emission Concepts versus Fuel Quality Aspects - Challenges and Technical Concepts

2011-08-30
2011-01-2097
From current point of view future emission legislations for heavy-duty engines as well as industrial engines will require complex engine internal measures in combination with sophisticated aftertreatment systems as well as according control strategies to reach the emission targets. With EU VI, JP 09/NLT and US10 for heavy-duty engines as well as future Tier4 final or stage IV emission legislation for industrial applications, EGR + DPF + SCR probably will be combined for most applications and therefore quite similar technological approaches will be followed up in Europe as well as in the US and in Japan. Most “emerging markets” all over the world follow up the European, US or Japanese emission legislation with a certain time delay. Therefore similar technologies need to be introduced in these markets in the future. On the other hand specific market boundary conditions and requirements have to be considered for the development of tailored system concepts in these markets.
Technical Paper

Simulation and Optical Analysis of Oil Dilution in Diesel Regeneration Operation

2011-08-30
2011-01-1844
High levels of exhaust temperature or rich mixtures are necessary for the regeneration of today's diesel particulate filters or NOx catalysts. Therefore, late main injection or post injection is an effective strategy but leads to the well-known problem of lubricating oil dilution depending on the geometry, rail pressure and injection strategy. In this paper a method is developed to simulate fuel entrainment into the lubricating oil wall film in the diesel combustion chamber to predict oil dilution in an early design stage prior to hardware availability for durability testing. The simulation method integrates a newly developed droplet-film interaction model and is compared to results of an optical single-cylinder diesel engine and a similar thermodynamic single-cylinder test engine. Phenomena of diesel post injection like igniting early post injection or split post injections with short energizing times are considered in this paper.
Technical Paper

Experimental Investigation of Diesel and Surrogate Fuels: Spray and Ignition Behavior

2011-08-30
2011-01-1921
In this work, surrogate fuels composed of n-decane and alpha-methylnaphthalene (AMNL) with different compositions according to the reference cetane numbers 53, 45, 38, and 23 are investigated. In addition to the two-component mixtures, we examine a three-component mixture composed of n-decane, AMNL, and di-n-butyl ether (DNBE) corresponding to a reference cetane number of 53. Spray characteristics of liquid and fuel vapor phase and the relationship between ignition quality and lift-off length are investigated. The experimental results show, first of all, that for these mixtures, the cetane number is a good indicator for the ignition delay. Diesel and surrogate fuels have different liquid penetration lengths, which depend on the evaporation rate, and hence vapor pressure and boiling point of the fuels.
Technical Paper

Auto-ignition kinetics of biomass derived alternative fuels for advanced combustion

2011-08-30
2011-01-1780
Autoignition delay times have been determined for promising biofuel candidates, n-butanol and butyl formate, over wide temperature and pressure ranges. The results indicate for n-butanol a strong pressure dependence on the ignition delays where a typical NTC (negative temperature coefficient) type behavior is observed as pressures are increased. These experimentally determined ignition delays and results from other research facilities are used to validate a detailed kinetic for n-butanol combustion. Secondly, this work reports promising high pressure ignition characteristics, including NTC type behavior, for butyl formate combustion at low and intermediate temperatures.
Journal Article

Performance Assessment of a Multi-Functional Reactor Under Conventional and Advanced Combustion Diesel Engine Exhaust Conditions

2011-04-12
2011-01-0606
Current progress in the development of diesel engines substantially contributes to the reduction of NOx and Particulate Matter (PM) emissions but will not succeed to eliminate the application of Diesel Particulate Filters (DPFs) in the future. In the past we have introduced a Multi-Functional Reactor (MFR) prototype, suitable for the abatement of the gaseous and PM emissions of the Low Temperature Combustion (LTC) engine operation. In this work the performance of MFR prototypes under both conventional and advanced combustion engine operating conditions is presented. The effect of the MFR on the fuel penalty associated to the filter regeneration is assessed via simulation. Special focus is placed on presenting the performance assessment in combination with the existing differences in the morphology and reactivity of the soot particles between the different modes of diesel engine operation (conventional and advanced). The effect of aging on the MFR performance is also presented.
Technical Paper

Relationship between Fuel Properties and Sensitivity Analysis of Non-Aromatic and Aromatic Fuels Used in a Single Cylinder Heavy Duty Diesel Engine

2011-04-12
2011-01-0333
Fuel properties are always considered as one of the main factors to diesel engines concerning performance and emission discussions. There are still challenges for researchers to identify the most correlating and non-correlating fuel properties and their effects on engine behavior. Statistical analyses have been applied in this study to derive the most un-correlating properties. In parallel, sensitivity analysis was performed for the fuel properties as well as to the emission and performance of the engine. On one hand, two different analyses were implemented; one with consideration of both, non-aromatic and aromatic fuels, and the other were performed separately for each individual fuel group. The results offer a different influence on each type of analysis. Finally, by considering both methods, most common correlating and non-correlating properties have been derived.
X