Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

A Study of Physical and Chemical Delay in a High Swirl Diesel System via Multiwavelength Extinction Measurements

1998-02-23
980502
The characterization of a turbulent diesel spray combustion process has been carried out in a divided chamber diesel system with optical accesses. Laser Doppler Anemometry, spectral extinction and flame intensity measurements have been performed from U.V., to visible from the start of injection to the end of combustion, at fixed air/fuel ratio and different engine speeds. Spatial distribution of fuel and vapor as well as the ignition location and soot distribution have been derived in order to study the mechanism of the air-fuel interaction and the combustion process. The analysis of results has shown that the high swirling motion transports the fuel towards the left part of the chamber and breaks up the jet into small droplets of different sizes and accelerates the fuel vaporization. Then, chemical and physical overlapped phases were observed during the ignition delay, contributing both to autoignition.
Technical Paper

LDV Measurements of Integral Length Scales in an IC Engine

1996-05-01
961161
Tangential component of velocity and turbulence were measured in three locations in the re-entrant combustion chamber of a motored single-cylinder d.i. Diesel engine (0.435 liter, 21:1 compression ratio) using a Laser Doppler Velocimetry system. Moreover, a modified LDV system with two-probe volume was used to measure directly lateral integral length scales of the velocity tangential component at two engine speeds. The measurements were made on a horizontal plane at 5 mm below the engine head from 100 degrees before TDC to 60 degrees after TDC of both the compression and expansion strokes. The engine was motored at 1,000 and 1,500 rpm respectively. An ensemble-averaging technique was performed to analyze the instantaneous velocity information supplied by two Burst Spectrum Analyzers. The lateral integral length scale was obtained from the integral of the spatial correlation coefficient of the velocity fluctuation for different separation.
Technical Paper

In-Cylinder Flow Measurements by LDA and Numerical Simulation by KIVA-II Code

1992-02-01
920155
The fluid-mechanic behaviour of straight-sided and re-entrant chamber geometries has been studied using laser doppler anemometry (LDA) technique. Measurements have been carried out during the compression stroke in a direct injection diesel engine, representative of medium size family, operating at 1000 rpm under motored conditions. The mean motion and turbulence intensity have been computed using a filtering procedure on the LDA data. Using the second version of KIVA code, the air flow field evolution during the same crank angle period has been also computed. To perform proper comparisons between measured and computed values of mean velocity and turbulence intensity, a careful choice of the initial conditions for computations has been performed. Reasonable agreement has been found between computed and measured mean swirl velocities for both combustion chamber geometries tested. On the contrary, the computed turbulence intensities underestimate those measured.
X