Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Effect of Surface Roughness on Tribological and NVH Behaviour of Brake System

2024-04-09
2024-01-2732
Brake assemblies are an essential part of any vehicle, and their effective functioning is critical for the safety and comfort of passengers. The surface roughness of brake components plays a vital role in figuring out their tribological and NVH (Noise, Vibration, and Harshness) behavior. It is essential to understand the impact of surface roughness on brake performance to ensure efficient braking and it has been a topic of interest in the automotive industry. In this study, the influence of surface roughness on the wear, and noise characteristics of a brake assembly has been investigated. The study also provides insights into the relationship between surface roughness, frictional behavior, and NVH performance, which can be used to improve the design and manufacturing of brake assemblies. The brake assembly includes of a disc, caliper, and brake pads, which work together to convert the kinetic energy of the vehicle into heat energy, has been considered in this study.
Technical Paper

Influence of Iron and Manganese on the Mechanical Properties and Microstructure of a Recycled EN AC-43200 Aluminium-Silicon Alloy

2023-11-05
2023-01-1880
The work investigates the effect of different Iron and Manganese contents in ad-hoc cast specimens made from recycled EN AC-43200 alloy. Tensile tests and metallographic analyses coupled with energy dispersive X-ray spectroscopy measurements are carried out to elucidate the interplay between the microstructure and the quasi-static properties of the Aluminium-Silicon alloy under investigation. A strong correlation between the composition and morphology of Fe/Mn -based intermetallic precipitates and tensile properties is demonstrated. Moreover, it is found that specific intermetallic phases are present only for certain, relative and/or absolute contents of Fe and Mn.
Technical Paper

A Comprehensive Numerical Model for Numerical Simulation of Ice Accretion and Electro-Thermal Ice Protection System in Anti-icing and De-icing Mode, with an Ice Shedding Analysis

2023-06-15
2023-01-1463
This work presents a comprehensive numerical model for ice accretion and Ice Protection System (IPS) simulation over a 2D component, such as an airfoil. The model is based on the Myers model for ice accretion and extended to include the possibility of a heated substratum. Six different icing conditions that can occur during in-flight ice accretion with an Electro-Thermal Ice Protection System (ETIPS) activated are identified. Each condition presents one or more layers with a different water phase. Depending on the heat fluxes, there could be only liquid water, ice, or a combination of both on the substratum. The possible layers are the ice layer on the substratum, the running liquid film over ice or substratum, and the static liquid film between ice and substratum caused by ice melting. The last layer, which is always present, is the substratum. The physical model that describes the evolution of these layers is based on the Stefan problem. For each layer, one heat equation is solved.
Technical Paper

Optimization of Aluminum Sleeve Design for the tow eye Durability Using DFSS Approach

2023-04-11
2023-01-0092
The automotive industry is moving towards larger SUVs and also electrification is a need to meet the carbon neutrality target. As a result, we see an increase in overall gross vehicle weight (GVW), with the additional weight coming from the HV battery pack, electric powertrain, and other electrical systems. Tow-eye is an essential component that is provided with every vehicle to use for towing during an emergency vehicle breakdown. The tow-eye is usually connected to the retainer/sleeve available in the bumper system and towed using the recovery vehicle or other car with towing provision. Therefore, the tow-eye should meet the functional targets under standard operating conditions. This study is mainly for cars with bumper and tow-eye sleeves made of aluminum which is used in the most recent development of vehicles for weight-saving opportunities. Tow-eye systems in aluminum bumpers are designed to avoid any bending or buckling of the sleeve during towing for whatever the GVW loads.
Technical Paper

Automotive Applications Multiaxial Proving Grounds and Road Test Simulator: Durability Prediction Methodology Development and Correlation for Rubber Components

2023-04-11
2023-01-0723
Many chassis and powertrain components in the transportation and automotive industry experience multi-axial cyclic service loading. A thorough load-history leading to durability damage should be considered in the early vehicle production steps. The key feature of rubber fatigue analysis discussed in this study is how to define local critical location strain time history based on nominal and complex load time histories. Material coupon characterization used here is the crack growth approach, based on fracture mechanics parameters. This methodology was utilized and presented for a truck engine mount. Temperature effects are not considered since proving ground (PG) loads are generated under isothermal high temperature and low frequency conditions without high amounts of self-heating.
Technical Paper

Virtual Accelerometer Approach to Create Vibration Profile for Automotive Component Shake Test

2023-04-11
2023-01-0722
Vibration shaker testing is a great tool of validating the vibration fatigue performance of automotive components & systems. However, the representative vibration schedule requires a pre-knowledge of the acceleration history for the test object, which usually is not available until the later development phase of a vehicle program when physical properties are available. Sometimes, a generic vibration schedule developed from the worst-case loading profiles are used with risk of lacking correlation with later full vehicle durability test such as Road Test Simulator (RTS) or Proving Ground (PG) road test due to the higher loading amplitude. This paper proposes a virtual accelerometer approach to collect acceleration responses of a component from a virtual vehicle model. First, a multiple body dynamic model will be produced for virtual load calculation over a series of digitalized virtual proving ground road profiles.
Technical Paper

Accurate Automotive Spinning Wheel Predictions Via Deformed Treaded Tire on a Full Vehicle Compared to Full Width Moving Belt Wind Tunnel Results

2023-04-11
2023-01-0843
As the automotive industry is quickly changing towards electric vehicles, we can highlight the importance of aerodynamics and its critical role in reaching extended battery ranges for electric cars. With all new smooth underbodies, a lot of attention has turned into the effects of rim designs and tires brands and the management of these tire wakes with the vehicle. Tires are one of the most challenging areas for aerodynamic drag prediction due to its unsteady behavior and rubber deformation. With the simulation technologies evolving fast regarding modeling spinning tires for aerodynamics, this paper takes the prior work and data completed by the authors and investigates the impact on the flow fields and aerodynamic forces using the most recent developments of an Immerse Boundary Method (IBM). IBM allows us to mimic realistically a rotating and deformed tire using Lattice Boltzmann methods.
Technical Paper

Fatigue Life Prediction and Correlation of Engine Mount Elastomeric Bushing using A Crack Growth Approach

2022-03-29
2022-01-0760
In a passenger car, suspension link bushings, engine and transmission mount bushings and bump-stops are made of elastomeric materials, to maximize the durability and comfort. Thus, deformation behavior of rubber and its durability is important for product design and development. In virtual engineering, simulating rubber fatigue is a complex exercise, since it needs right modeling strategy and coupon based testing material data. Principal stretches based Ogden model is used to characterize the hyper elastic deformation behavior of natural rubber. Fatigue crack growth approach used here for the fatigue analysis. Engine torque strut mount is used to control the engine and transmission fore aft motion and it is connected between body and Powertrain (PT) system. Powertrain events are predominant for damage contribution to mount failure. So, it is important to predict fatigue life of mount elastomer bushing under Powertrain loading.
Technical Paper

Fatigue Endurance Limit of Fasteners in Automotive Application

2022-03-29
2022-01-0260
Fasteners, commonly used in automotive industry, play an important role in the safety and reliability of the vehicle structural system. In practical application, bolted joints would never undergo fully reversed loading; there always will be positive mean stress on bolt. The mean stress has little influence on the fatigue life if the maximum stress is lower than a threshold which is near the yield stress of the bolt. However, when the sum of the mean stress and the stress amplitude exceeds the threshold, the endurance limit stress amplitude decreases fast as the mean stress increases. The purpose of this paper is to research the fatigue endurance limit of a fastener and establish the threshold for safe design in automotive application. In order to obtain the fatigue endurance limit at different mean stress levels, various mechanical tests were performed on M12x1.75 and M16x1.5 Class 10.9 fasteners using MTS test systems.
Journal Article

Development of a CAE Modeling Technique for Heavy Duty Cargo Weight using a DFSS Methodology

2022-03-29
2022-01-0774
Cargo box is one of the indispensable structures of a pickup truck which makes it capable of transporting heavy cargo weights. This heavy cargo weight plays an important role in durability performance of the box structure when subjected to road load inputs. Finite element representation for huge cargo weight is always challenging, especially in a linear model under dynamic proving ground road load durability analysis using a superposition approach. Any gap in virtual modeling technique can lead to absurd cargo box modes and hence durability results. With the existing computer aided engineering (CAE) approach, durability results could not correlate much with physical testing results. It was crucial to have the right and robust CAE modeling technique to represent the heavy cargo weight to provide the right torsional and cargo modes of the box structure and in turn good durability results.
Journal Article

Low-Cost Magnesium Alloy Sheet Component Development and Demonstration Project

2022-03-29
2022-01-0248
Most of the applications of magnesium in lightweighting commercial cars and trucks are die castings rather than sheet metal, and automotive applications of magnesium sheet have typically been experimental or low-volume serial production. The overarching objective of this collaborative research project organized by the United States Automotive Materials Partnership (USAMP) was to develop new low-cost magnesium alloys, and demonstrate warm-stamping of magnesium sheet inner and outer door panels for a 2013 MY Ford Fusion at a fully accounted integrated component cost increase over conventional steel stamped components of no more than $2.50/lb. saved ($5.50/kg saved). The project demonstrated the computational design of new magnesium (Mg) alloys from atomistic levels, cast new experimental alloy ingots and explored thermomechanical rolling processes to produce thin Mg sheet of desired textures.
Journal Article

Cathodic Protection of Brake System Components

2021-10-11
2021-01-1275
The work investigates the use of cathodic protection -based strategies (e.g. sacrificial anodes) with the aim of extending the corrosion resistance of Aluminum components to be used in disc brake systems. Lab-scale electrochemical measurements, including voltammetry and zero resistance ammetry (ZRA), are used to: a) define the requirements of a cathodic protection system for a 42200 Aluminum alloy; b) evaluate the protection capability of a Zn-based sacrificial anode; and c) demonstrate an extended corrosion resistance of the protected part even in the presence of a galvanic coupling, with respect to the unprotected condition.
Technical Paper

Effect of Casting Process on Strength Behaviour of Automotive Alloy Wheel

2021-04-06
2021-01-0800
Strength and fatigue assessment of chassis components are essentially influenced by the material used and manufacturing processes chosen. The manufacturing process of chassis components decides the variation in the mechanical properties of the component, which has an impact on the strength/fatigue performance. Investigating the design concerning the manufacturing processes is vital to the industry. Standard computer aided engineering (CAE) procedures for validating the alloy wheels usually consider the material properties as homogeneous. There was a gap between test results and CAE durability prediction (as per standard procedure). Incorporating the manufacturing process related characteristics with the strength simulation will be a viable solution to reduce this gap. This study was intended at developing a procedure for the strength analysis of an alloy wheel by considering the manufacturing process.
Technical Paper

FCA US LLC-Magnesium Closures Development

2021-04-06
2021-01-0278
This paper will focus on automotive development highlights of FCA US LLC magnesium intensive closures components. Deploying lightweight materials is one of many key strategies that has been implemented to reduce vehicle mass and improve overall fuel economy while maintaining rigorous functional objective performance. This paper will outline some basic design and manufacturing considerations for magnesium closures. The development of the 2017 Chrysler Pacifica liftgate and 2018 Jeep® Wrangler swing gate along with the two generations of magnesium spare tire brackets will be the focus.
Technical Paper

Development of a Robust Thermal Management System for Lead-Acid Batteries

2021-04-06
2021-01-0232
Lead-acid batteries have been widely used in automotive applications. Extending battery life and reducing battery warranty requires reducing any deteriorating to battery internals and battery electrolyte. At the end of battery life, it is required to maintain at least 50% of its initial capacity [1,2]. The rate of battery degradation increases at high battery temperatures due to increased rate of electrochemical reactions and potential loss of battery electrolyte. For Lead-Acid batteries, an electrolyte solution consists of diluted sulfuric acid. Battery electrolyte/water loss affects battery performance. Water loss is caused by high internal battery temperature and gassing off due to battery electrochemistry. High temperatures, high charging rates, and over charging can cause a loss of electrolyte in non-sealed batteries. In sealed batteries, the same factors will cause an increase in temperature and pressure which can eventually result in the release of hydrogen and oxygen gases.
Technical Paper

Parametric Design Study of McPherson Strut to Stabilizer Bar Link Bracket Weld Fatigue Using Design for Six Sigma and Taguchi Approach

2021-04-06
2021-01-0235
Vehicle suspension parts are subjected to variable road loads, manufacturing process variation and high installation loads in assembly process. Seam welding can be considered as such process to connect more components and parts. Typical in a Mc Pherson suspension system stabilizer bar link is connected to the strut assembly through ball stud and clamped to a bracket welded to the outer strut tube. Cracks have been observed in the stabilizer bar link bracket welds of vehicles in the field, effecting the functionality of the suspension system. During preliminary phase of product development CAE assessment of the seam weld is carried out against road load data, if the design does not meet the targets enabler studies are carried out in an iterative approach. Various design variables (control factors) can be considered to carry out the iterations.
Technical Paper

Application of DFSS Taguchi Method to Design Robust Shock Tower

2021-04-06
2021-01-0234
Design for Six Sigma (DFSS) is an essential tool and methodology for innovation projects to improve the product design/process and performance. This paper aims to present an application of the DFSS Taguchi Method for an automotive/vehicle component. High-Pressure Vacuum Assist Die Casting (HPVADC) technology is used to make Cast Aluminum Front Shock Tower. During the vehicle life, Shock Tower transfers the road high impact loads from the shock absorber to the body structure. Proving Ground (PG) and washout loads are often used to assess part strength, durability life and robustness. The initial design was not meeting the strength requirement for abusive washout loads. The project identified eight parameters (control factors) to study and to optimize the initial design. Simulation results confirmed that all eight selected control factors affect the part design and could be used to improve the Shock Tower's strength and performance.
Journal Article

Anodization: Recent Advancements on Corrosion Protection of Brake Calipers

2020-10-05
2020-01-1626
Brake calipers for high-end cars are typically realized using Aluminum alloys, with Silicon as the most common alloying element. Despite the excellent castability and machinability of Aluminum-Silicon alloys (AlSix), anodization is often required in order to increase its corrosion resistance. This is particularly true in Chlorides-rich environments where Aluminum can easily corrode. Even if anodization process is known for almost 100 years, anodization of AlSix -based materials is particularly challenging due to the presence of eutectic Silicon precipitates. These show a poor electric conductivity and a slow oxidation kinetics, leading to inhomogeneous anodic layers. Continuous research and process optimization are required in order to develop anodic layers with enhanced morphological and electrochemical properties, targeting a prolonged resistance of brake calipers under endurance corrosive tests (e.g. >1000 hours Neutral Salt Spray (NSS) tests).
Technical Paper

Numerical Investigation on GDI Spray under High Injection Pressure up to 100 MPa

2020-09-15
2020-01-2108
In recent years, the increase of gasoline fuel injection pressure is a way to improve thermal efficiency and lower engine-out emissions in GDI homogenous combustion concept. The challenge of controlling particulate formation as well in mass and number concentrations imposed by emissions regulations can be pursued improving the mixture preparation process and avoiding mixture inhomogeneity with ultra-high injection pressure values up to 100 MPa. The increase of the fuel injection pressure in GDI homogeneous systems meets the demand for increased injector static flow, while simultaneously improves the spray atomization and mixing characteristics with consequent better combustion performance. Few studies quantify the effects of high injection pressure on transient gasoline spray evolution. The aim of this work was to simulate with OpenFOAM the spray morphology of a commercial gasoline injected in a constant volume vessel by a prototypal GDI injector.
Technical Paper

CAE Modeling Static and Fatigue Performance of Short Glass Fiber Reinforced Polypropylene Coupons and Components

2020-04-14
2020-01-1309
One approach of reducing weight of vehicles is using composite materials, and short glass fiber reinforced polypropylene is one of most popular composite materials. To more accurately predict durability performance of structures made of this kind of composite material, static and fatigue performance of coupons and components made of a short glass fiber reinforced polypropylene has been physically studied. CAE simulations have been conducted accordingly. This paper described details of CAE model setup, procedures, analysis results and correlations to test results for static, fiber orientation flow and fatigue of coupons and a battery tray component. The material configurations include fiber orientations (0, 20 and 90 degrees), and mean stress effect (R = -1.0, -0.5, -0.2, 0.1 and 0.4). The battery tray component samples experience block cycle loading with loading ratio of R = -0.3 and 0.3. The CAE predictions have reasonable correlations to the test results.
X