Refine Your Search

Author

Search Results

Technical Paper

The Jetq-Family - New Highly Ductile AHSS Steel Grades with Improved Technological Properties

2023-04-11
2023-01-0080
New highly ductile AHSS steel grades with tensile strength greater than 980 MPa have been developed with the aim of combining high strength and excellent formability. The new jetQ-Family offers high local and global ductility while still fulfilling standards for resistance towards hydrogen embrittlement and weldability. These improved properties are based on their specifically engineered microstructure, which utilize the TRIP-mechanism in a strengthened matrix. This work shows how the microstructure plays a significant role for the tensile testing as well as hole-expansion. Based on the increased yield strength a better crash performance compared to conventional DP steel grades can be attained. The local ductility is demonstrated with excellent hole expansion ratios and high resistance to sheared edge failure. In combination with improved bending angles and thickness strain at fracture a robust process for manufacturing of components can be achieved.
Journal Article

Effect of Local Ductility of Advanced High Strength Steels in 980MPa and 1180MPa Grades on Crash Performance of Automotive Structures

2023-04-11
2023-01-0081
A fundamental study on the ductility of high strength steels under impact deformation is carried out to investigate the effect of the local ductility of various materials on crash performance. In this study, newly developed 980 and 1180 MPa grade steels are investigated to clarify their advantages in term of crash performance compared to conventional DP (Dual Phase) steels. The features of the developed steel, named as jetQ are higher yield strength and higher local ductility due to an optimized microstructure by the quenching and partitioning process (QP) [1, 2]. The bending test according to VDA 238-100 is performed while observing the fracture propagation during the bending test. Fracture strain in the tensile tests is evaluated by a three-dimensional shape measurement technique for the fracture surface. Both three-point bending tests and axial impact tests are performed to evaluate the crashworthiness of different types of steel.
Technical Paper

A Study of Topology Optimization for Spot-Welding Locations in Automotive Body by Using Driving Simulation

2019-04-02
2019-01-0830
An automotive body is made by joining over 500 components made from steel sheets. Since the joining locations for spot-welding are decided by the designer of each component, the number of spot-welding points tends to be either excessive or inadequate for the required automotive body stiffness. In this study, a topology method which is able to select effectively from design space was applied to optimization of spot-welding locations for vehicle stiffness performance by using a full vehicle model. Static stiffness using constraint of nodes cannot sufficiently express deformation during driving. Torsional deformation occurred in all parts of the body in the mode in which one point of the front bilateral suspension parts was forced and the other three points were constrained in the general static stiffness mode.
Journal Article

Ductile Fracture from Spot Weld and Flange Edge in Advanced High Strength Steels

2017-03-28
2017-01-0365
A simple testing method is proposed in order to investigate ductile fracture in crashed automotive components made from advanced high strength steels. This type of fracture is prone to occur at spot-welded joints and flange edges. It is well known that the heat affected zone (HAZ) is a weak point in high strength steel due to the formation of annealed material around the spot-welded nugget, and the flange edge also has low ductility due to the damage caused by shearing. The proposed method is designed to simulate a ductile fracture which initiates from a spot-welded portion or a sheared edge in automotive components which are deformed in a crash event. Automotive steel sheets with a wide range of tensile strengths from 590MPa to 1470MPa are examined in order to investigate the effect of material strength on fracture behavior. The effects of material cutting methods, namely, machining and shearing, are also investigated.
Journal Article

Development of Carburizing Steel for Innovation in Parts Manufacturing Process

2017-03-28
2017-01-0378
In order to develop a new carburizing steel material that realizes an intermediate heat treatment-free process in parts manufacturing, the cold forgeability of the as-rolled steel and suppression of abnormal grain growth of austenite were studied. It was shown that adjustment of addition amount of Si, Mn and Cr, suppression of dynamic strain aging during cold forging, and an increase of ferrite fraction by controlled rolling contribute to the reduction of deformation resistance. However, Nb precipitation control by fully utilizing mill manufacturing processes was also necessary for suppression of abnormal grain growth of austenite. A new steel for carburizing was developed by integrating these technologies, making it possible to eliminate annealing before cold forging and normalizing before carburizing simultaneously. Thus, the developed steel is an important innovation in the parts manufacturing process.
Technical Paper

Effect of Mechanical Properties and Forming Conditions on Outer Panel Performances of High Strength Steel Sheets

2016-04-05
2016-01-0355
Although reduction of the thickness of materials used in the automobile body is important for weight reduction, reducing the thickness of outer panels deteriorates dent resistance and surface distortion. To investigate the potential for weight reduction, the factors which influence the surface distortion and dent resistance properties were evaluated quantitatively with the aim of securing these properties. The materials used in these experiments were a tensile strength (TS) 340MPa grade bake hardenable (BH) steel sheet, which is often used in door outers, and a TS 440MPa grade BH steel sheet for outer panels. Surface distortion increases as a result of higher yield point (YP). It is possible to suppress the increase in surface distortion by increasing the blank holding force (BHF) in press forming. However, because this reduces the BHF range to the forming limit, application of low YP material is considered to be more advantageous for suppressing surface distortion.
Technical Paper

Development of Optimization Method for Automotive Parts and Structures

2014-04-01
2014-01-0410
A new topology analysis method was developed to optimize part shapes and the configuration of automotive components. Only solid elements are used in the conventional topology optimization method. The key point of the new method is to embed solid elements in a model made of shell elements. In this study, stiffness optimizations were carried out for a simple cylindrical model, automotive floor model and full vehicle model. Specifically, optimized automotive components were a center tunnel, a side-sill and a joint linking a side-member and a cross-member, which are made of steel sheets and have rectangular cross sections. The results show that the newly-developed topology optimization method is valuable in the optimization of automotive components which are made of steel sheets and have rectangular cross sections.
Technical Paper

Properties of a Newly Developed Galvannealed Steel Sheet with Modified Surface

2011-04-12
2011-01-1056
Since galvannealed steel sheets (GA) are widely used for automobile body parts, they require excellent features such as press formability, resistant spot weldability and phosphatability. We have focused on improving the press formability of GA since the late 1990s, and have developed a new type of surface modified GA which has a lower friction coefficient than conventional GA. The developed surface modified GA based on mild steel is now used by all automakers in Japan, especially for those parts such as side panels that are difficult to form. This paper describes the features of the surface modified GA.
Technical Paper

A Study of Sheet Hydro-forming Using High Strength Steel Sheets

2006-04-03
2006-01-0546
Sheet hydro-forming was applied to hydro-form a door outer panel using different steel grades. The effect of mechanical properties and the forming conditions on panel properties such as thickness profile and cross-sectional shape accuracy were investigated by both experimental sheet hydro-forming and FEM forming analysis. 590MPa T.S. steel grade was successfully formed with improved dent resistance compared to the conventional 340MPa T.S. steel grade. On the other hand, the results of the FEM forming process analysis showed that the pre-forming conditions were important in controlling the fracture formation during forming and to improve dent resistance, which successfully led to the best forming condition.
Technical Paper

A New Method of Stress Calculation in Spot Welded Joint and Its Application to Fatigue Life Prediction of Actual Vehicle

2003-10-27
2003-01-2809
A method of fatigue life prediction of spot welded joint under multi-axial loads has been developed by fatigue life estimation working groups in the committee on fatigue strength and structural reliability of JSAE. This method is based on the concept of nominal structural stress ( σ ns) proposed by Radaj and Rupp, and improved so that D value is not involved in stress calculation. The result of fatigue life estimation of actual vehicle with nominal structural stress which was calculated through newly developed method had very good correlation with the result of multi-axial loads fatigue test carried out with test piece including high strength steel.
Technical Paper

New Frictional Testing Method for Stamping Formability - Development of Dr. STAMP (Direct & Rapid, Surface Tribology Analyzing Method for Press) Method -

2003-10-27
2003-01-2812
Galvannealed steel sheet (GA) is very extensively used for vehicle panels. However ζ-phase (FeZn13) in GA coat causes poor stamping formability. Previously, there were no easy methods to evaluate the influence of ζ-phase on the frictional characteristics other than the X-ray diffraction method. This study will discuss the development of a new testing method: Dr. STAMP Method that is both efficient and convenient with pin-on-disc tester.
Technical Paper

Prediction of Strength of Spot-Welded Joints by Measurements of Local Mechanical Properties

2003-10-27
2003-01-2830
Tensile testing technique for the small sample was newly developed. Small tensile specimens with gage length of 1mm were taken from spot welds of high tensile strength steel sheets, and stress-strain relationships and ductility of base metal, heat affected zone including corona bond and nugget were individually measured. Finite element analyses of spot-welded joints under the conditions of static and dynamic tensile-shear loading were carried out with these local mechanical properties to predict the fracture mode and strength of the joints. It was clarified that the effects of both nugget diameter and class of steels were evaluated with good accuracy.
Technical Paper

Nd:YAG Laser Welding of Zinc-coated Steel Sheet

1998-09-29
982361
This paper describes the lap welding of Zinc-coated steel sheet using a high power continuous wave YAG laser. The well-known problem of welding the Zinc-coated sheet is related to the low boiling point of zinc compared with the melting point of steel. During lap welding, zinc coating at the interface vaporize rapidly and causes defects1)2). In this study, therefore, lap welding was performed by YAG laser. The effects of type of coating layer, welding conditions, tensile strength and corrosion resistance after electro-deposition was examined. It was found that the weldability of coated steel is different by type of coating. Zn-Ni coated steel showed good weldability, but galvanealed steel inevitably pore pits with no gap set up. These defects not only lower the strength of joint, but also produce irregular bead where easily corroded after electro-deposition.
Technical Paper

Corrosion Resistance of Gas Shielded Metal Arc Welds with E-coat

1997-02-24
971008
Gas shielded metal arc welding is generally applied to automobile chassis parts. However, the weld parts with the E-coat show poor corrosion resistance. Therefore, the corrosion mechanism of the weld parts was investigated. The results found two reasons why the weld parts corroded faster than the non weld parts:(1)inadequate phosphating (2)defects in the E-coat. After detailed investigation, it was clarified that the major cause of poor corrosion resistance was the defects in the E-coat caused by slags formed on the surface of the weld bead. Therefore the amount of slag has to be decreased to improve the corrosion resistance. The effect of shielding gas composition on the amount of slag was then investigated. In the case of Ar and oxidizing gas mixture, the corrosion resistance improved as the oxidizing gas content decreased. This was due to the reduction of slags.
Technical Paper

The Corrosion Resistance of Organic Composite-Coated Steel Sheets

1993-10-01
932365
In order to investigate the corrosion resistance of organic composite-coated steel sheets ( OCS ) in a real automotive environment, many kinds of corrosion tests were performed on test pieces and real automotive doors. Tests with a corrosive solution including iron rust were introduced to simulate the real corrosive environment of automotive doors. The relationship between the components of OCS and the corrosion resistance in the rust-including tests was examined. In addition, electrochemical studies were performed. Results indicate OCS has much better corrosion resistance than plated steel sheets with heavier coating weight in all tests. OCS shows excellent corrosion resistance in rust-free corrosive solution, however, some types of OCS do have corrosion concerns in rust-including tests. It became clear that these OCS types have an organic coating with lower cross-linking.
Technical Paper

Newly Developed Hot Rolled High Strength Steel Sheets and Their Formability

1993-03-01
930030
A wider usage of hot rolled high strength steels (HRHSSs) are intensively studied for more complicated underbody structural parts of cars now. With an emphasis placed on the improvement of sheared-edge flangeability, we have developed new types of HRHSSs ranging from 440N/mm2 to 690N/mm2 in ultimate tensile strength (UTS). The microstructure and chemistry of these steels were controlled: The hard second phase in the polygonal ferrite matrix was controlled both by adjusting the chemical composition, mainly, silicon-content, and by applying thermomechanical treatment to a hot strip mill. Compared to conventional high strength steels such as a high-carbon, low-silicon steel and a niobium-bearing steel, various formability-performances of the developed steels were found to be good.
Technical Paper

Frictional Behavior of New Polymer Lubricating Film for Coated Steel Sheets

1993-03-01
930810
Recently, many kinds of coated steel sheets are developed and used for automobile panels. Some of them show higher coefficient of friction and poorer formability than a cold rolled steel sheet. New polymer lubricating films are developed and proved to improve frictional characteristics of coated steel sheets in this study. The developed polymer lubricating films are applied to Electro Galvanized steel sheet and Hot Dip Galvannealed steel sheet, and coefficient of friction and formability of them are measured by using model dies. Different coefficients of friction are obtained by a change in a combination of components in a polymer lubricating film. As a result, the most suitable coefficient of friction is able to chose in forming conditions by the developed polymer lubricating films.
Technical Paper

Development of a New 450 N/mm2 Grade Ultra-Low Carbon Sheet Steel for Automotive Panels

1992-02-01
920248
For the automotive exposed panels, several types of 350N/mm2 grade bake-hardenable sheet steel have been developed and actually applied. However for further weight reduction of automotive body panels, especially inner panels, a 450N/mm2 grade sheet steel with excellent formability has been required. For this demand a new 450N/mm2 grade sheet steel has been developed. As the result it was found, that by the co-addition of Mn and P to ultra-low carbon interstitial free steel the recrystallization texture favorable for deep drawability can be formed, accompanied with the increase in tensile strength, when hot band coiled temperature is lower than 773K. In order to improve the property of the 450N/mm2 grade steel, the effect of Si content has been studied. It was found that the deep drawability is not deteriorated by the addition of Si into the Mn and P co-added ultra-low carbon IF-steel.
Technical Paper

New Type of Hardenable Hot-Rolled High-Strength Steels

1992-02-01
920250
Two types of TS 450 to 600 MPa grade hot rolled high strength steels have been developed whose strength increases by a post-deformation heat treatment. One is a nitrogen added steel, produced by a low temperature coiling method. This steel shows an increase in tensile strength by about 60 to 90 MPa after a conventional baking treatment. The other is a Cu-bearing steel, produced also by a low temperature coiling method. This steel shows much larger increase in tensile strength by about 200 MPa due to the precipitation hardening of copper, but it requires an additional heat treatment at a relatively high temperature such as 600° C.
Technical Paper

The Development of Vibration Damping Steel Sheets for Inner Panels of Automotive Vehicles

1991-05-01
911083
Vibration damping steel sheets (VDSS), which have sandwich structures with intermediate layers of resin, have been studied. The most important characteristics of VDSS for inner panels of automotive vehicles are the vibration damping properties, press formability and spot weldability. Vibration damping properties, which are quantified by loss factor,η, were influenced by both tanδ, which indicates damping capacity of resins, and elastic modulus of core resin. From a view point of vibration damping properties, resins with larger tanδ and relatively lower elastic modulus were favorable. Because these mechanical characteristics vary considerably with temperature, it is important to select the most suitable resin for the service temperature range. The relationship between noise reduction effect and loss factor of VDSS were also studied. It was experimentally confirmed that noise reduction effect of VDSS is proportional to the logarithm of their loss factor.
X