Refine Your Search

Search Results

Viewing 1 to 7 of 7
Technical Paper

Application of Deep Learning Methods for Pedestrian Collision Detection Using Dashcam Videos

2021-04-02
2020-22-0008
The goal of this study is to clarify the usefulness of deep learning methods for pedestrian collision detection using dashcam videos for advanced automatic collision notification, focusing on pedestrians, as they make up the highest number of traffic fatalities in Japan. First, we created a dataset for deep learning from dashcam videos. A total of 78 dashcam videos of pedestrian-to-automobile accidents were collected from a video hosting website and from the Japan Automobile Research Institute (JARI). Individual frames were selected from the video data amounting to a total of 1,212 still images, which were added to our dataset with class and location information. This dataset was then divided to create training, validation, and test datasets. Next, deep learning was performed based on the training dataset to learn the features of pedestrian collision images, which are images that capture pedestrian behavior at the time of the collision.
Technical Paper

Simplifying the Structural Design of the Advanced Pedestrian Legform Impactor for Use in Standardized Testing

2018-04-03
2018-01-1049
The advanced Pedestrian Legform Impactor (aPLI) incorporates a number of enhancements for improved lower limb injury prediction capability with respect to its predecessor, the FlexPLI. The aPLI also incorporates a simplified upper body part (SUBP), connected to the lower limb via a mechanical hip joint, that expands the impactor’s applicability to evaluate pedestrian’s lower limb injury risk also in high-bumper cars.As the aPLI has been developed to be used in standardized testing, further considerations on the impactor’s manufacturability, robustness, durability, usability, and repeatability need to be accounted for.. The aim of this study is to define and verify, by means of numerical analysis, a battery of design modifications that may simplify the manufacturing and use of physical aPLIs, without reducing the impactors’ biofidelity. Eight candidate parameters were investigated in a two-step numerical analysis.
Journal Article

Influence of the Upper Body of Pedestrians on Lower Limb Injuries and Effectiveness of the Upper Body Compensation Method of the FlexPLI

2015-04-14
2015-01-1470
Current legform impact test methods using the FlexPLI have been developed to protect pedestrians from lower limb injuries in collisions with low-bumper vehicles. For this type of vehicles, the influence of the upper body on the bending load generated in the lower limb is compensated by setting the impact height of the FlexPLI 50 mm above that of pedestrians. However, neither the effectiveness of the compensation method of the FlexPLI nor the influence of the upper body on the bending load generated in the lower limb of a pedestrian has been clarified with high-bumper vehicles. In this study, therefore, two computer simulation analyses were conducted in order to analyze: (1) The influence of the upper body on the bending load generated in the lower limb of a pedestrian when impacted by high-bumper vehicles and (2) The effectiveness of the compensation method for the lack of the upper body by increasing impact height of the FlexPLI for high-bumper vehicles.
Technical Paper

Whole-Body Response to Pure Lateral Impact

2010-11-03
2010-22-0014
The objective of the current study was to provide a comprehensive characterization of human biomechanical response to whole-body, lateral impact. Three approximately 50th-percentile adult male PMHS were subjected to right-side pure lateral impacts at 4.3 ± 0.1 m/s using a rigid wall mounted to a rail-mounted sled. Each subject was positioned on a rigid seat and held stationary by a system of tethers until immediately prior to being impacted by the moving wall with 100 mm pelvic offset. Displacement data were obtained using an optoelectronic stereophotogrammetric system that was used to track the 3D motions of the impacting wall sled; seat sled, and reflective targets secured to the head, spine, extremities, ribcage, and shoulder complex of each subject. Kinematic data were also recorded using 3-axis accelerometer cubes secured to the head, pelvis, and spine at the levels of T1, T6, T11, and L3. Chest deformation in the transverse plane was recorded using a single chestband.
Technical Paper

Development of a Biofidelic Flexible Pedestrian Leg-form Impactor (Flex-PLI 2004) and Evaluation of its Biofidelity at the Component Level and at the Assembly Level

2005-04-11
2005-01-1879
JAMA-JARI has developed a biofidelic flexible pedestrian leg-form impactor (Flex-PLI 2004) by making several modifications to the Flex-PLI 2003 to improve usability, durability and biofidelity. Biofidelity evaluation for the Flex-PLI 2004 was estimated at the component level (thigh, knee, and leg individually) as well as at the assembly level (thigh-knee-leg complex), using an objective impactor biofidelity evaluation system based on a method developed by Rhule et al. to eliminate any subjective prejudice in an impactor biofidelity evaluation. Applying the biofidelity evaluation system to the Flex-PLI 2004, the average impactor biofidelity rank (IBR) score became 1.22 at the component level and 1.26 at the assembly level. These IBR scores mean that the Flex-PLI 2004 has good biofidelity at the component level as well as at the assembly level.
Technical Paper

Development of a Biofidelic Flexible Pedestrian Legform Impactor

2003-10-27
2003-22-0020
The European Enhanced Vehicle-Safety Committee (EEVC) has proposed a test procedure to assess the protection vehicles provide to the lower extremity of pedestrians during a collision. This procedure utilizes a legform impactor developed by the Transport Research Laboratory (TRL). However, the TRL Pedestrian Legform Impactor (TRL-PLI) is composed of rigid long bones (cannot simulate the bone flexibility of the human) and rather stiff knee joint. The differences lead to a lack of biofidelity of the TRL-PLI, i.e., unnaturally stiff responses are observed. This study develops a biofidelic Flexible Pedestrian Legform Impactor (Flex-PLI) that can simulate human bone flexibility and human knee joint stiffness properly. The Flex-PLI can also measure many of the injury parameters, long bone strains at multiple locations, knee ligament elongations, and the compression forces between the femoral condyles and tibial plateau in comparison to the TRL-PLI.
X