Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Effect of Properties and Additives of Gasoline on Low-Speed Pre-Ignition in Turbocharged Engines

2022-08-30
2022-01-1077
Gasoline-related factors that affect low-speed pre-ignition (LSPI) include the distillation properties of gasoline, manganese (Mn), ethanol, diesel fuel, detergent for aftermarket, and iron (Fe). The combined effect of Mn with ethanol or high calcium engine oil (high-Ca oil) has not been sufficiently clarified. Therefore, appropriate countermeasures for LSPI have not yet been implemented. To clarify the effect of the gasoline properties and additives on LSPI, engine tests were conducted using gasoline with different “PM Index” values, an indicator of distillation properties, different concentrations of Mn, ethanol, diesel fuel, detergent, Fe, and high-Ca oil. The results showed that the LSPI frequency tended to increase with the PM Index, Mn up to 60 ppm, diesel fuel up to 2 vol.%, and detergent up to three times the standard amount.
Technical Paper

Kinetic Measurements of HNCO Hydrolysis over SCR Catalyst

2018-09-10
2018-01-1764
To meet the strict emission regulations for diesel engines, an advanced processing device such as a Urea-SCR (selective catalytic reduction) system is used to reduce NOx emissions. The Real Driving Emissions (RDE) test, which is implemented in the European Union, will expand the range of conditions under which the engine has to operate [1], which will lead to the construction of a Urea-SCR system capable of reducing NOx emissions at lower and higher temperature conditions, and at higher space velocity conditions than existing systems. Simulations are useful in improving the performance of the urea-SCR system. However, it is necessary to construct a reliable NOx reduction model to use for system design, which covers the expanded engine operation conditions. In the urea-SCR system, the mechanism of ammonia (NH3) formation from injected aqueous urea solution is not clear. Thus, it is important to clarify this mechanism to improve the NOx reduction model.
Technical Paper

Mechanism of White Smoke Generation Derived from Hydrocarbons Accumulations on Diesel Oxidation Catalyst

2018-04-03
2018-01-0641
White smoke emission is observed at the tailpipe of diesel vehicles when unburned hydrocarbons (HCs) are adsorbed on a diesel oxidation catalyst (DOC) under low exhaust gas temperature. The purpose of this study is to gain a better understanding of white smoke emission derived from HCs, and to reduce emission levels. First, the components of HCs and the particle size distribution of white smoke emission were analyzed. It was clarified that semi-volatile organic compounds (SVOC) and water are condensed around soluble organic fraction and the order of particle size in white smoke is submicron scale. Additionally, the correlation between the behavior of white smoke emission and the amount/quality of HCs adsorbed on a DOC were investigated by examining the change of zeolite content in the DOC. It was found that the heavy HCs ratio in adsorbed HCs on DOC increases with a decrease in zeolite content when DOC inlet gas temperature is 120 °C.
Technical Paper

Optimal Specifications for the Advanced Pedestrian Legform Impactor

2017-11-13
2017-22-0014
This study addresses the virtual optimization of the technical specifications for a recently developed Advanced Pedestrian Legform Impactor (aPLI). The aPLI incorporates a number of enhancements for improved lower limb injury predictability with respect to its predecessor, the FlexPLI. It also incorporates an attached Simplified Upper Body Part (SUBP) that enables the impactor’s applicability to evaluate pedestrian’s lower limb injury risk also with high-bumper cars. The response surface methodology was applied to optimize both the aPLI’s lower limb and SUBP specifications, while imposing a total mass upper limit of 25 kg that complies with international standards for maximum weight lifting allowed for a single operator in the laboratory setting. All parameters were virtually optimized considering variable interaction, which proved critical to avoid misleading specifications.
Journal Article

Prediction of Spray Behavior in Injected by Urea SCR Injector and the Reaction Products

2017-10-08
2017-01-2375
In the urea SCR system, urea solution is injected by injector installed in the front stage of the SCR catalyst, and NOx can be purified on the SCR catalyst by using NH3 generated by the chemical reaction of urea. NH3 is produced by thermolysis of urea and hydrolysis of isocyanic acid after evaporation of water in the urea solution. But, biuret and cyanuric acid which may cause deposit are sometimes generated by the chemical reactions without generating NH3. Spray behavior and chemical reaction of urea solution injected into the tail-pipe are complicated. The purpose of this study is to reveal the spray behavior and NH3 generation process in the tail-pipe, and to construct the model capable of predicting those accurately. In this report, the impingement spray behavior is clarified by scattered light method in high temperature flow field. Liquid film adhering to the wall and deposit generated after evaporation of water from the liquid film are photographed by the digital camera.
Journal Article

Construction of an ISO 26262 C Class Evaluation Method for Motorcycles

2016-11-08
2016-32-0059
For applying ISO 26262 to motorcycles, controllability classification (C class evaluation) by expert riders is considered an appropriate technique. Expert riders have evaluated commercial product development for years and can appropriately conduct vehicle tests while observing safety restrictions (such as avoiding the risk of falling). Moreover, expert riders can ride safely and can stably evaluate motorcycle performance even if the test conditions are close to the limits of vehicle performance. This study aims to construct a motorcycle C class evaluation method based on an expert rider’s subjective evaluation. On the premise that expert riders can rate the C class, we improved a test procedure that used a subjective evaluation sheet as the concrete C class evaluation method for an actual hazardous event.
Technical Paper

Study on Haptic Maneuver Guidance by Periodic Knocks on Accelerator Pedal

2015-03-10
2015-01-0039
This study proposes a method for presenting maneuver request information of accelerator pedal to a driver via the accelerator pedal itself. By applying periodic force like vibration on an accelerator pedal, information is transferred to the driver without displacing the accelerator pedal. In this study, the authors focus on a saw-tooth wave as the periodic force. When the saw-tooth-waved force is applied on the accelerator pedal, a human driver feels as if the accelerator pedal is knocked by someone periodically. In addition, information about the quantity of requested maneuver can be transferred by the amplitude of the saw-tooth wave. Based on these facts, the saw-tooth wave is modified and optimized empirically with ten human drivers so that the information of direction is transferred most reliably. In addition, the relationship between the amplitude of the saw-tooth wave and requested quantity of the pedal maneuver that the drivers feel is formulated.
Journal Article

Comparison of Fires in Lithium-Ion Battery Vehicles and Gasoline Vehicles

2014-04-01
2014-01-0428
Electric vehicles have become more popular and may be involved in fires due to accidents. However, characteristics of fires in electric vehicles are not yet fully understood. The electrolytic solution of lithium-battery vehicles is inflammable, so combustion characteristics and gases generated may differ from those of gasoline cars. Therefore, we conducted fire tests on lithium-ion battery vehicles and gasoline vehicles and investigated the differences in combustion characteristics and gases generated. The fire tests revealed some differences in combustion characteristics. For example, in lithium-ion battery vehicles, the battery temperature remained high after combustion of the body. However, there was almost no difference in the maximum CO concentration measured 0.5 to 1 m above the roof and 1 m from the side of the body. Furthermore, HF was not detected in either type of vehicle when measured at the same positions as for CO.
Technical Paper

Validity of Low Ventilation for Accident Processing with Hydrogen Leakage from Hydrogen-Fuelled Vehicle

2013-04-08
2013-01-0211
Appropriate emergency response information is required for first responder before hydrogen fuel cell vehicles will become widespread. This paper investigates experimentally the hydrogen dispersion in the vicinity of a vehicle which accidentally releases hydrogen horizontally with a single volumetric flow of 2000 NL/min in the under-floor section while varying cross and frontal wind effects. This hydrogen flow rate represents normally a full throttle power condition. Forced wind was about maximum 2 m/s. The results indicated that the windward side of the vehicle was safe but that there were chiefly two areas posing risks of fire by hydrogen ignition. One was the leeward side of the vehicle's underbody where a larger region of flammable hydrogen dispersion existed in light wind than in windless conditions. The other was the area around the hydrogen leakage point where most of the leaked hydrogen remained undiffused in an environment with a wind of no stronger than 2 m/s.
Technical Paper

Investigations of the impact of 10% ethanol blended fuels on performances of sold gasoline vehicles in the Japanese market already on the road in Japan

2011-08-30
2011-01-1987
The study of 10% ethanol blended gasoline (E10 gasoline) utilization has been conducted in the Japan Auto-Oil Program (JATOP). In order to clarify the impact of E10 gasoline on vehicle performances, exhaust emissions, evaporative emissions, driveability and material compatibility have been investigated by using domestic gasoline vehicles including mini motor vehicles which are particular to Japan. The test results reveal that E10 gasoline has no impact on exhaust emissions, engine startup time and acceleration period under the hot start condition, but a slight deterioration is observed in some test cases under the cold start condition using E10 gasolines with 50% distillation temperature (T50) level set to the upper limit of Japanese Industrial Standards (JIS) K 2202. Regarding evaporative emissions, the tested vehicles shows no remarkable increase in the hot soak loss (HSL), diurnal breathing loss (DBL) and running loss (RL) testing with E10 gasolines.
Journal Article

Combustion Behavior of Leaking Hydrogen and Effects of Ceiling Variations

2011-04-12
2011-01-0254
Hydrogen concentration during combustion in a confined space with a ceiling was investigated. The results indicated that steady-state hydrogen concentration was highest at the ceiling surface for all hydrogen flow rates. When hydrogen concentration was 10-20%, weak flame propagation occurred at the ceiling surface, with the most easily burnable spots being dented areas such as seams, pores and creases on the ceiling surface. The unstable and limited nature of flame propagation at the ceiling surface was attributed to the relationship between temperature and hydrogen concentration in a confined space.
Journal Article

An Experimental Study on the Fire Response of Vehicles with Compressed Hydrogen Cylinders

2010-04-12
2010-01-0134
To investigate the events that could arise when fighting fires in vehicles with carbon fiber reinforced plastic (CFRP) hydrogen storage cylinders, we conducted experiments to examine whether a hydrogen jet diffusion flame caused by activation of the pressure relief device (PRD) can be extinguished and how spraying water influences the cylinder and PRD. The experiments clarified that the hydrogen jet flame cannot be extinguished easily with water or dry powder extinguishers and that spraying water during activation of the PRD may result in closure of the PRD, but is useful for maintaining the strength of CFRP composite cylinders for vehicles.
Journal Article

Developing Safety Standards for FCVs and Hydrogen Vehicles

2009-04-20
2009-01-0011
The SAE Fuel Cell Vehicle (FCV) Safety Working Group has been addressing FCV safety for over 9 years. The initial document, SAE J2578, was published in 2002. SAE J2578 has been valuable as a Recommended Practice for FCV development with regard to the identification of hazards and the definition of countermeasures to mitigate these hazards such that FCVs can be operated in the same manner as conventional gasoline internal combustion engine (ICE)-powered vehicles. SAE J2578 is currently being revised so that it will continue to be relevant as FCV development moves forward. For example, test methods were refined to verify the acceptability of hydrogen discharges when parking in residential garages and commercial structures and after crash tests prescribed by government regulation, and electrical requirements were updated to reflect the complexities of modern electrical circuits which interconnect both AC and DC circuits to improve efficiency and reduce cost.
Journal Article

Developing Safety Standards for FCVs and Hydrogen Vehicles

2008-04-14
2008-01-0725
The SAE FCV Safety Working Group has been addressing fuel cell vehicle (FCV) safety for over 8 years. The initial document, SAE J2578, was published in 2002. SAE J2578 has been valuable to FCV development with regard to the identification of hazards and the definition of countermeasures to mitigate these hazards such that FCVs can be operated in the same manner as conventional gasoline internal combustion engine (ICE)-powered vehicles. J2578 is currently being updated to clarify and update requirements so that it will continue to be relevant and useful in the future. An update to SAE J1766 for post-crash electrical safety was also published to reflect unique aspects of FCVs and to harmonize electrical requirements with international standards. In addition to revising SAE J2578 and J1766, the Working Group is also developing a new Technical Information Report (TIR) for vehicular hydrogen systems (SAE J2579).
Technical Paper

Calculation of Hydrogen Consumption for Fuel Cell Vehicles by Exhaust Gas Formulation

2008-04-14
2008-01-0465
The hydrogen consumption of fuel cell vehicles (FCV) can be measured by the gravimetric, pressure and flow methods within a ±1% error. These are the methods acknowledged by ISO and SAE [1, 2], but require the test vehicles to be modified in order to supply hydrogen from an external, rather than the onboard tank. Consequently, technical assistance of the vehicle manufacturer is necessary for this modification, while various components in the test vehicle must be readjusted. For these reasons, a measurement method free of vehicle modification is in great demand. The present study therefore developed an “oxygen balance method” which determines the amount of hydrogen that has reacted with oxygen in the fuel cell stack by measuring the oxygen concentration in exhaust gas.
Technical Paper

Thermal Behavior in Hydrogen Storage Tank for FCV on Fast Filling (2nd Report)

2008-04-14
2008-01-0463
If a compressed hydrogen tank for vehicles is filled with hydrogen gas more quickly, the gas temperature in the tank will increase. In this study, we conducted hydrogen gas filling tests using the TYPE 3 and TYPE 4 tanks. During the tests, we measured the temperature of the internal liner surface and investigated its relationship with the gas temperature in the tank. We found that the gas temperature in the upper portion of the TYPE 4 tank rose locally during filling and that the temperature of the internal liner surface near that area also rose, resulting in a temperature higher than the gas temperature at the center of the tank. To keep the maximum temperature in the tank below the designed temperature (85°C) during filling and examine the representative tank internal temperatures, it is important to examine filling methods that can suppress local rises of tank internal temperature.
Technical Paper

Nano Particle Emission Evaluation of State of the Art Diesel Aftertreatment Technologies (DPF, urea-SCR and DOC), Gasoline Combustion Systems (Lean Burn / Stoichiometric DISI and MPI) and Fuel Qualities Effects (EtOH, ETBE, FAME, Aromatics and Distillation)

2007-10-29
2007-01-4083
Newly designed laboratory measurement system, which reproduces particle number size distributions of both nuclei and accumulation mode particles in exhaust emissions, was developed. It enables continuous measurement of nano particle emissions in the size range between 5 and 1000 nm. Evaluations of particle number size distributions were conducted for diesel vehicles with a variety of emission aftertreatment devices and for gasoline vehicles with different combustion systems. For diesel vehicles, Diesel Oxidation Catalyst (DOC), urea-Selective Catalytic Reduction (urea-SCR) system and catalyzed Diesel Particulate Filter (DPF) were evaluated. For gasoline vehicles, Lean-burn Direct Injection Spark Ignition (DISI), Stoichiometric DISI and Multi Point Injection (MPI) were evaluated. Japanese latest transient test cycles were used for the evaluation: JE05 mode driving cycle for heavy duty vehicles and JC08 mode driving cycle for light duty vehicles.
Technical Paper

Unregulated Emissions Evaluation of Gasoline Combustion Systems (Lean Burn / Stoichiometric DISI and MPI), State of the Art Diesel Aftertreatment Technologies (DPF, urea-SCR and DOC), and Fuel Qualities Effects (EtOH, ETBE, Aromatics and FAME)

2007-10-29
2007-01-4082
In order to clarify future automobile technologies and fuel qualities to improve air quality, second phase of Japan Clean Air Program (JCAPII) had been conducted from 2002 to 2007. Predicting improvement in air quality that might be attained by introducing new emission control technologies and determining fuel qualities required for the technologies is one of the main issues of this program. Unregulated material WG of JCAPII had studied unregulated emissions from gasoline and diesel engines. Eight gaseous hydrocarbons (HC), four Aldehydes and three polycyclic aromatic hydrocarbons (PAHs) were evaluated as unregulated emissions. Specifically, emissions of the following components were measured: 1,3-Butadiene, Benzene, Toluene, Xylene, Ethylbenzene, 1,3,5-Trimethyl-benzene, n-Hexane, Styrene as gaseous HCs, Formaldehyde, Acetaldehyde, Acrolein, Benzaldehyde as Aldehydes, and Benzo(a)pyrene, Benzo(b)fluoranthene, Benzo(k)fluoranthene as PAHs.
Technical Paper

Investigations of Compatibility of ETBE Gasoline with Current Gasoline Vehicles II

2007-07-23
2007-01-2039
JCAPII gasoline workgroup reported vehicle emission study to comprehend the impact of ETBE blending. In previous study, we focused on the compatibility of ETBE blended gasoline with Japanese current gasoline vehicles in-use. Based on recent discussion with ETBE 8% blended gasoline into the market, more information becomes necessary. In this second report, we studied to comprehend the actual emission impact using realistic model fuels using several base stocks. Fuel properties of T50, T90 and aromatic compound content were selected through discussions. Specifications were changed within the range of the market. Both ETBE 0% and 8% were combined for these fuel matrixes. In total, eight fuels and two reference fuels were tested. Two J-ULEV vehicles (one MPI, and a stoichiometric-SIDI) were procured as representatives. We discussed quantitative and qualitative impact toward emissions. Data regarding CO2 and fuel economy change were also reported.
Technical Paper

SOF Component of Lubricant Oil on Diesel PM in a High Boosted and Cooled EGR Engine

2007-04-16
2007-01-0123
The engine in the research is a single cylinder DI diesel using the emission reduction techniques such as high boost, high injection pressure and broad range and high quantity of exhaust gas recirculation (EGR). The study especially focuses on the reduction of particulate matter (PM) under the engine operating conditions. In the experiment the authors measured engine performance, exhaust gases and mass of PM by low sulfur fuel such as 3 ppm and low sulfur lubricant oil such as 0.26%. Then the PM components were divided into soluble organic fraction (SOF) and insoluble organic fraction (ISOF) and they were measured at each engine condition. The mass of SOF was measured from the fuel fraction and lubricant oil fraction by gas chromatography. Also each mass of soot fraction and sulfate fraction was measured as components of ISOF. The experiment was conducted at BMEP = 2.0 MPa as full load condition of the engine and changing EGR rate from 0% to 40 %.
X