Refine Your Search

Topic

Search Results

Journal Article

Full-Scale Validation of Modified Pedestrian Dummy

2023-04-11
2023-01-0786
Injury assessment by using a whole-body pedestrian dummy is one of the ways to investigate pedestrian safety performance of vehicles. The authors’ group has improved the biofidelity of the lower limb and the pelvis of the mid-sized male pedestrian dummy (POLAR III) by modifying those components. This study aims to evaluate the biofidelity of the whole-body response of the modified dummy in full-scale impact tests. The pelvis, the thigh and the leg of POLAR III have been modified in a past study by optimizing their compliance by means of the installation of plastic and rubber parts, which were used for the tests. The generic buck developed for the assessment of pedestrian dummy whole-body impact response and specified in SAE J3093 was used for this study. The buck representing the geometry of a small family car is comprised of six parts: lower bumper, bumper, grille, hood edge, hood and windshield.
Technical Paper

Thoracic Injury Risk Curves for Rib Deflections of the SID-IIs Build Level D

2016-11-07
2016-22-0016
Injury risk curves for SID-IIs thorax and abdomen rib deflections proposed for future NCAP side impact evaluations were developed from tests conducted with the SID-IIs FRG. Since the floating rib guide is known to reduce the magnitude of the peak rib deflections, injury risk curves developed from SID-IIs FRG data are not appropriate for use with SID-IIs build level D. PMHS injury data from three series of sled tests and one series of whole-body drop tests are paired with thoracic rib deflections from equivalent tests with SID-IIs build level D. Where possible, the rib deflections of SID-IIs build level D were scaled to adjust for differences in impact velocity between the PMHS and SID-IIs tests. Injury risk curves developed by the Mertz-Weber modified median rank method are presented and compared to risk curves developed by other parametric and non-parametric methods.
Journal Article

Influence of the Upper Body of Pedestrians on Lower Limb Injuries and Effectiveness of the Upper Body Compensation Method of the FlexPLI

2015-04-14
2015-01-1470
Current legform impact test methods using the FlexPLI have been developed to protect pedestrians from lower limb injuries in collisions with low-bumper vehicles. For this type of vehicles, the influence of the upper body on the bending load generated in the lower limb is compensated by setting the impact height of the FlexPLI 50 mm above that of pedestrians. However, neither the effectiveness of the compensation method of the FlexPLI nor the influence of the upper body on the bending load generated in the lower limb of a pedestrian has been clarified with high-bumper vehicles. In this study, therefore, two computer simulation analyses were conducted in order to analyze: (1) The influence of the upper body on the bending load generated in the lower limb of a pedestrian when impacted by high-bumper vehicles and (2) The effectiveness of the compensation method for the lack of the upper body by increasing impact height of the FlexPLI for high-bumper vehicles.
Technical Paper

Influence of Introduction of Oblique Moving Deformable Barrier Test on Collision Compatibility

2015-04-14
2015-01-1492
The National Highway Traffic Safety Administration (NHTSA) has developed moving deformable barriers for vehicle crash test procedures to assess vehicle and occupant response in partial overlap vehicle crashes. For this paper, based on the NHTSA Oblique Test procedure, a mid-size sedan was tested. The intent of this research was to provide insight into possible design changes to enhance the oblique collision performance of vehicles. The test results predicted high injury risk for BrIC, chest deflection, and the lower extremities. In this particular study, reducing lower extremity injuries has been focused on. Traditionally, lower extremity injuries have been reduced by limiting the intrusion of the lower region of the cabin's toe-board. In this study, it is assumed that increasing the energy absorbed within the engine compartment is more efficient than reinforcing the passenger compartment as a method to reduce lower extremity injuries.
Journal Article

Investigation of the Impact Phenomenon During Minor Collision

2013-04-08
2013-01-1545
ISO 12405-1,2 specifies international testing standards for lithium-ion batteries for vehicles. In the mechanical shock test is used to determine if the battery is damaged due to the shock imposed when the vehicle runs over a curb or similar minor accidents. Therefore, we conducted minor collision tests against a curb using an actual vehicle and compared the test results with the conditions specified in ISO 12405-1,2. The results confirmed that the impulse wave obtained using an actual vehicle within the range of the test in this study differs from the shape of the impulse wave specified in ISO 12405-1,2.
Technical Paper

Kinematics Validation of Age-Specific Restrained 50th Percentile Occupant FE Model in Frontal Impact

2012-04-16
2012-01-0565
Recently, the global increase of elderly vehicle users has become an issue to be considered in the effort of enhancing safety performance of vehicle restraint system. It is thought that an evaluation tool for the system representing properties of age-specific human body will play a major role for that. In previous research, the authors had developed age-specific component finite element (FE) models for the lower limb, lumbar spine, and thorax representing the adult and elderly occupants. However, the models have not been validated in terms of full body kinematics. It is essential for such models to be validated in terms of full body kinematics in order to ensure validity of the results of the assessment of the safety performance of restraint systems. In the present research, the adult and elderly occupant full body FE models were developed by incorporating the lower limb, lumbar spine and thorax of the adult and elderly FE models established in previous research.
Journal Article

Development of the Methodology for FCV Post-crash Fuel Leakage Testing Incorporated into SAE J2578

2010-04-12
2010-01-0133
This paper explains the new methodology for post-crash fuel leakage testing of Fuel Cell Vehicles (FCVs) and other hydrogen vehicles utilizing compressed hydrogen storage systems. This methodology was incorporated into SAE J2578 that was revised and published in January, 2009. The new methodology is based on the concept in FMVSS 303 that specifies post-crash fuel leakage test method and criteria for CNG vehicle and adopted some modifications. Specifically, the following items are addressed: (1) Allowable leakage can be accurately evaluated in test even with large size tank that obtains only small pressure drop when a given amount of leakage occurs. A new method to deal with the influence of measurement errors was devised. (2) Even though only one option of test gas and initial filling pressure is accepted in FMVSS 303, new methodology for hydrogen system allows helium and hydrogen at reduced pressure as alternatives in addition to hydrogen at service pressure.
Technical Paper

Injury Risk Curves for the WorldSID 50th Male Dummy

2009-11-02
2009-22-0016
The development of the WorldSID 50th percentile male dummy was initiated in 1997 by the International Organization for Standardization (ISO/SC12/TC22/WG5) with the objective of developing a more biofidelic side impact dummy and supporting the adoption of a harmonized dummy into regulations. More than 45 organizations from all around the world have contributed to this effort including governmental agencies, research institutes, car manufacturers and dummy manufacturers. The first production version of the WorldSID 50th male dummy was released in March 2004 and demonstrated an improved biofidelity over existing side impact dummies. Full-scale vehicle tests covering a wide range of side impact test procedures were performed worldwide with the WorldSID dummy. However, the vehicle safety performance could not be assessed due to lack of injury risk curves for this dummy. The development of these curves was initiated in 2004 within the framework of ISO/SC12/TC22/WG6 (Injury criteria).
Journal Article

Developing Safety Standards for FCVs and Hydrogen Vehicles

2009-04-20
2009-01-0011
The SAE Fuel Cell Vehicle (FCV) Safety Working Group has been addressing FCV safety for over 9 years. The initial document, SAE J2578, was published in 2002. SAE J2578 has been valuable as a Recommended Practice for FCV development with regard to the identification of hazards and the definition of countermeasures to mitigate these hazards such that FCVs can be operated in the same manner as conventional gasoline internal combustion engine (ICE)-powered vehicles. SAE J2578 is currently being revised so that it will continue to be relevant as FCV development moves forward. For example, test methods were refined to verify the acceptability of hydrogen discharges when parking in residential garages and commercial structures and after crash tests prescribed by government regulation, and electrical requirements were updated to reflect the complexities of modern electrical circuits which interconnect both AC and DC circuits to improve efficiency and reduce cost.
Technical Paper

Investigation of Upper Body and Cervical Spine Kinematics of Post Mortem Human Subjects (PMHS) during Low-Speed, Rear-End Impacts

2009-04-20
2009-01-0387
A total of eight low-speed, rear-end impact tests using two Post Mortem Human Subjects (PMHS) in a seated posture are reported. These tests were conducted using a HYGE-style mini-sled. Two test conditions were employed: 8 kph without a headrestraint or 16 kph with a headrestraint. Upper-body kinematics were captured for each test using a combination of transducers and high-speed video. A 3-2-2-2-accelerometer package was used to measure the generalized 3D kinematics of both the head and pelvis. An angular rate sensor and two single-axis linear accelerometers were used to measure angular speed, angular acceleration, and linear acceleration of T1 in the sagittal plane. Two high-speed video cameras were used to track targets rigidly attached to the head, T1, and pelvis. The cervical spine kinematics were captured with a high-speed, biplane x-ray system by tracking radiopaque markers implanted into each cervical vertebra.
Technical Paper

Development and Validation of a Finite Element Model for the Polar-II Upper Body

2006-04-03
2006-01-0684
The goal of this study was to develop and validate a finite element (FE) model of the Polar-II pedestrian dummy. An upper body model consisting of the head, neck, shoulder, thorax, and abdomen was coupled with a previously validated model of the lower limb The viscoelastic material properties of the dummy components were determined from dynamic compression tests of shoulder urethane, shoulder rubber and abdominal foam. For validation of the entire upper body, the model was compared with NHTSA response requirements for their advanced frontal dummy (Thor) including head and neck pendulum tests as well as ribcage and abdominal impact tests. In addition, the Polar-II full body FE model was subjected to simulated vehicle-pedestrian impacts that recreated published experiments. Simulated head and pelvis accelerations as well as upper body trajectories reasonably reproduced the experiment.
Technical Paper

A Subsystem Crash Test Methodology for Retention of Convenience Organizer Equipment System in Rear Impact

2005-04-11
2005-01-0735
Any equipment system or vehicle component like the Convenience Organizer storage system needs to be retained within the cargo compartment without intruding into the passenger compartment for occupant safety during a high speed impact. This paper outlines a test method to evaluate the retention of such a system in a rear impact environment. The method utilizes a low speed barrier to simulate a high speed RMB (Rear Moving Barrier) impact. The content of the low speed RMB impact test setup was developed utilizing DYNA3D analytical simulation results from a full vehicle model subjected to high-speed RMB impact. The retention of the equipment developed through this test method was confirmed on a full scale rear impact test.
Technical Paper

Full-Width Test and Overload Test to Evaluate Compatibility

2005-04-11
2005-01-1373
Test procedures to assess vehicle compatibility were investigated based on a series of crash tests. Structural interaction and compartment strength are significant for compatibility, and full-width tests and overload tests have been proposed to assess these key factors. Full-width rigid and deformable barrier test results were compared with respect to force distributions, structural deformation and dummy responses. In full-width deformable tests, forces from structures can be clearly shown in barrier force distributions. The average height of force (AHOF) determined in full rigid and deformable barrier tests were similar. From car-to-car tests, it was demonstrated that stiffening the compartment of small cars is an effective and direct way to improve compatibility. To evaluate the compartment strength, five overload tests were carried out. The rebound force is proposed as a compartment strength criterion.
Technical Paper

Design of a Full-Scale Impact System for Analysis of Vehicle Pedestrian Collisions

2005-04-11
2005-01-1875
The complexity of vehicle-pedestrian collisions necessitates extensive validation of pedestrian computational models. While body components can be individually simulated, overall validation of human pedestrian models requires full-scale testing with post mortem human surrogates (PMHS). This paper presents the development of a full-scale pedestrian impact test plan and experimental design that will be used to perform PMHS tests to validate human pedestrian models. The test plan and experimental design is developed based on the analysis of a combination of literature review, multi-body modeling, and epidemiologic studies. The proposed system has proven effective in testing an anthropometrically correct rescue dummy in multiple instances. The success of these tests suggests the potential for success in a full-scale pedestrian impact test using a PMHS.
Technical Paper

Evaluation of Automatic Fire Suppression Systems in Full Scale Vehicle Fire Tests and Static Vehicle Fire Tests

2005-04-11
2005-01-1788
A prototype fire suppression system was tested in one full-scale vehicle crash tests and three static vehicle fire tests. The prototype fire suppression system consisted of 2 Solid Propellant Gas Generators and two optical detectors. These components were installed on the hood of the test vehicle. A vehicle crash test and a series of static vehicle fire tests were performed to determine the effectiveness of this prototype fire suppression systems in extinguishing fires in the engine compartment of a crashed vehicle
Technical Paper

Significant Factors in Height of Force Measurements for Vehicle Collision Compatibility

2004-03-08
2004-01-1165
The concept of height of force has been suggested by some researchers as one possible parameter defining the structural interaction probability between vehicles of different sizes. This proposed parameter was defined as the vertical centroid of forces exerted on a flat barrier surface when a vehicle crashes into the barrier. It is therefore measured as a function of elapsed time since crash. In this paper, the height of force is obtained from theoretical calculations and also measured in crash tests at 56 km/h against barriers instrumented with an array of load cells. It is observed that the measured values of height of force have significant errors which are dependent on factors other than the crash conditions and the properties of the vehicle's structure and geometry. These factors need to be taken into account in future discussions of using the height of force or the average height of force as an indicator of vehicle compatibility.
Technical Paper

A Study of Compatibility Test Procedure in Frontal Impact

2003-05-19
2003-06-0168
The purpose of this study is to examine compatibility test procedures proposed in the IHRA Vehicle Compatibility Working Group. Various crash tests were conducted with different vehicle weights and stiffness in our previous study, and each of the compatibility problems, namely mass; stiffness and geometric incompatibility were identified in these tests. In order to improve the compatibility, it is necessary to evaluate and control relevant vehicle characteristics of compatibility in test procedures. According to the IHRA study, relevant aspects for compatibility in frontal impact are: Good structural interaction; Frontal stiffness matching; Maintaining passenger compartment integrity; Control the deceleration time histories of impacting cars.
Technical Paper

An Examination of the Effect of Seat Free-Play on Modal Analysis Results

2003-05-05
2003-01-1598
With the amount of adjustability present in today's automotive seat, it is a given that some form of looseness and free-play will exist in the structure. The automotive seat community is commonly faced with free-play issues; this is a significant issue where modal analysis is concerned. Free-play creates a non-linear situation, causing a violation of the linear mathematics that modal analysis is based on. Obviously, this situation is not the ideal circumstances under which to perform modal testing and analysis, but 99.9% of the time, the receipt of better samples (reduced free-play) is not a likely option, and the test must still go on. Ideally, you would want to test this structure using random excitation with a shaker to minimize the nonlinearities and provide a repeatable input force.
Technical Paper

Relationship of Crash Test Procedures to Vehicle Compatibility

2003-03-03
2003-01-0900
This paper examines the effect that test barriers currently used for frontal and side impact tests have had on collision compatibility between different-sized vehicles. The peak force levels generated by the vehicles’ front structures are one of the significant factors in determining vehicle compatibility. It is shown from principles of mechanics that the use of fixed barriers as a test device may lead to higher force levels for front ends of larger vehicles and thus increase the incompatibility between large and small vehicles. Review of data from various sources supports this conclusion that the peak force levels of vehicles’ front ends have increased in proportion to their test mass. Available crash data is also examined for a relationship between NCAP ratings of vehicles and the likelihood of serious and fatal injuries to occupants of those vehicles. These data do not show any relationship between the frontal NCAP ratings of vehicles and their rate of serious or fatal injuries.
Technical Paper

Quasi-Static and Impact Strength of Fatigue Damaged Spot Welds

2003-03-03
2003-01-0610
As the automotive industry becomes more concerned with the crash performance of automobiles, the behavior of used vehicles becomes an interesting subject. In this work, the effect of aging on spot welded joints was simulated by applying fatigue loading to the samples. Samples were then subjected to quasi-static and impact tests to measure the effect of fatigue aging to the strength of the samples. The results show (a) a reduction in the strength of the test samples under impact conditions, (b) no obvious reduction in quasi-static conditions, and (c) significant reduction in strength if cracks in the welds were initiated during the fatigue aging process.
X