Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Effect of n-Butanol Addition on Combustion and Emission Characteristics of HTL and Diesel Blends

2020-04-14
2020-01-0393
HTL is a kind of biodiesel converted from wet biowaste via hydrothermal liquefaction (HTL), which has drawn increasing attention in recent years due to its wide range of raw materials (algae, swine manure, and food processing waste). However, from the previous experiments done in a constant volume chamber, it was observed that the presence of 20% of HTL in the blend produced as much soot as pure diesel at in chamber environment oxygen ratio of 21%, and even more soot at low oxygen ratios. It was also observed that n-butanol addition could reduce the soot emission of diesel significantly under all tested conditions. In this work, the spray and combustion characteristics of HTL and diesel blends with n-butanol added were investigated in a constant volume chamber. The in-chamber temperature and oxygen ranged from 800 to 1200 K and 21% to 13%, respectively, covering both conventional and low-temperature combustion (LTC) regimes.
Journal Article

Prediction of Spray Behavior in Injected by Urea SCR Injector and the Reaction Products

2017-10-08
2017-01-2375
In the urea SCR system, urea solution is injected by injector installed in the front stage of the SCR catalyst, and NOx can be purified on the SCR catalyst by using NH3 generated by the chemical reaction of urea. NH3 is produced by thermolysis of urea and hydrolysis of isocyanic acid after evaporation of water in the urea solution. But, biuret and cyanuric acid which may cause deposit are sometimes generated by the chemical reactions without generating NH3. Spray behavior and chemical reaction of urea solution injected into the tail-pipe are complicated. The purpose of this study is to reveal the spray behavior and NH3 generation process in the tail-pipe, and to construct the model capable of predicting those accurately. In this report, the impingement spray behavior is clarified by scattered light method in high temperature flow field. Liquid film adhering to the wall and deposit generated after evaporation of water from the liquid film are photographed by the digital camera.
Technical Paper

Analysis of Spray Feature Injected by Tailpipe Injector for Aftertreatment of Diesel Engine Emissions

2017-10-08
2017-01-2373
Diesel Particulate Filter (DPF) is a very effective aftertreatment device to limit particulate emissions from diesel engines. As the amount of soot collected in the DPF increases, the pressure loss increases. Therefore, DPF regeneration needs to be performed. Injected fuel into the exhaust line upstream of the Diesel Oxidation Catalyst (DOC), hydrocarbons are oxidized on the DOC, which increases the exhaust gas temperature at the DPF inlet. It is also necessary that the injected fuel is completely vaporized before entering the DOC, and uniformly mixed with the exhaust gases in order to make the DOC work efficiency. However, ensuring complete evaporation and an optimum mixture distribution in the exhaust line are challenging. Therefore, it is important that the fuel spray feature is grasped to perform DPF regeneration effectively. The purpose of this study is the constructing a simulation model.
Technical Paper

An Optical Investigation of Multiple Diesel Injections in CNG/Diesel Dual-Fuel Combustion in a Light Duty Optical Diesel Engine

2017-03-28
2017-01-0755
Dual-fuel combustion combining a premixed charge of compressed natural gas (CNG) and a pilot injection of diesel fuel offer the potential to reduce diesel fuel consumption and drastically reduce soot emissions. In this study, dual-fuel combustion using methane ignited with a pilot injection of No. 2 diesel fuel, was studied in a single cylinder diesel engine with optical access. Experiments were performed at a CNG substitution rate of 70% CNG (based on energy) over a wide range of equivalence ratios of the premixed charge, as well as different diesel injection strategies (single and double injection). A color high-speed camera was used in order to identify and distinguish between lean-premixed methane combustion and diffusion combustion in dual-fuel combustion. The effect of multiple diesel injections is also investigated optically as a means to enhance flame propagation towards the center of the combustion chamber.
Technical Paper

Study on the Interaction of Clearance Flow and Shock Wave in a Turbine Nozzle

2017-03-28
2017-01-1039
Radial flow Variable Nozzle Turbine (VNT) enables better matching between the turbocharger and engine. At partial loading or low-end engine operating points, the nozzle vane opening of the VNT is decreased to achieve higher turbine efficiency and transient response, which is a benefit for engine fuel consumption and emission. However, under certain small nozzle opening conditions (such as nozzle brake and low-end operating points), strong shock waves and strong nozzle clearance flow are generated. Consequently, strong rotor-stator interaction between turbine nozzle and impeller is the key factor of the impeller high cycle fatigue and failure. In present paper, flow visualization experiment is carried out on a linear turbine nozzle. The turbine nozzle is designed to have single-sided clearance, and the Schlieren visualization method is used to describe the formation and development process of clearance flow and shock wave under different clearance and expansion ratio configurations.
Journal Article

Surface Fatigue Cracking Behavior of a CrN-Coated Tool Steel Influenced by Sliding Cycles and Sliding Energy Density

2017-03-28
2017-01-0303
Light-weighting of vehicles is one of the challenges for transportation industry due to the increasing pressure of demands in better fuel economy and environment protection. Advanced high strength steels (AHSS) are considered as prominent material of choice to realize lightweight auto body and structures at least in near term. Stamping of AHSS with conventional die materials and surface coatings, however, results in frequent die failures and undesired panel surface finish. A chromium nitride (CrN) coating with plasma nitriding case hardened layer on a die material (duplex treatment) is found to offer good wear and galling resistances. The coating failure initiates from fatigue cracking on the coating surface due to cyclic sliding frictions. In this work, cyclic inclined sliding wear test was used to imitate a stamping process for study on development of coating fatigue cracking, including crack length and spacing vs. sliding-cycles and sliding energy densities.
Journal Article

A Semi-Detailed Chemical Kinetic Mechanism of Acetone-Butanol-Ethanol (ABE) and Diesel Blends for Combustion Simulations

2016-04-05
2016-01-0583
With the development of advanced ABE fermentation technology, the volumetric percentage of acetone, butanol and ethanol in the bio-solvents can be precisely controlled. To seek for an optimized volumetric ratio for ABE-diesel blends, the previous work in our team has experimentally investigated and analyzed the combustion features of ABE-diesel blends with different volumetric ratio (A: B: E: 6:3:1; 3:6:1; 0:10:0, vol. %) in a constant volume chamber. It was found that an increased amount of acetone would lead to a significant advancement of combustion phasing whereas butanol would compensate the advancing effect. Both spray dynamic and chemistry reaction dynamic are of great importance in explaining the unique combustion characteristic of ABE-diesel blend. In this study, a semi-detailed chemical mechanism is constructed and used to model ABE-diesel spray combustion in a constant volume chamber.
Technical Paper

Effects Analysis of Torsion Bar Spring Modelling Precision on Properties of Pre-Setting Process

2016-04-05
2016-01-1327
The study of mechanical properties special in the characteristics of elastic element is a challenging task for vehicle industry. Since torsion bar spring acts as an important part of elastic element, and improves performance of torsion bar spring is of great concern. The effects of the torsion bar spring pre-setting precision on the presetting performance are presented. Based on elastic-plastic theories, the algebraic model of torsion bar spring is established to analyze the stress, torque and residual stress under the yield and plastic conditions in pre-setting process. Then, the stress and strain states of various torsion bar springs in different conditions are simulated using the validated finite element model in ABAQUS software. The simulation results show the effects of torsion error on the pre-setting performance are less than 5% in the pre-setting process.
Technical Paper

Life Prediction of Shift Valve for Wet Shift Clutch under Abrasive Wear

2015-04-14
2015-01-0682
In the present paper a degradation assessment and life prediction method has been proposed for electro-hydraulic shift valve applied to control wet shift clutch in Power-shift steering transmission (PSST). Unlike traditional analysis of contaminant sensitivity, our work is motivated by the failure mechanisms of abrasive wear with a mathematic model. Plowing process included in abrasion will consecutively increase the roughness of mating surfaces and thereby enlarge the clearance space for leaking more fluid. It is an overwhelming wear mechanism in the degradation of shift valve within serious-contaminated fluid. Herein a mathematic model for assessment and prediction is proposed by considering particle morphology and abrasion theory. Such model has been verified for its applicability and accuracy through comparison between theoretical and experimental results. Assuming the proposed model to be general, valve wearing behavior in any hydraulic system can be simulated.
Technical Paper

A Test Bench for the Turbocharger Fatigue Life Based on the Self-Circulation

2015-04-14
2015-01-0429
The low cycle fatigue experiment is extensively used to test the reliability and durability of turbocharger. Low cycle fatigue test is mainly the switching between high and low speed. As the result of the experiment, the fatigue life is shorter as the difference between high and low speed becomes greater. In the traditional low cycle fatigue test, a large air compressor is needed to drive the turbocharger under different operating conditions, which consume large amounts of electric power. This paper presents a new experiment device which has double chambers and double turbochargers. This device can be self-circulating, without the large air compressor, to realize high and low speed switching on the premise of not exceeding the limitation of turbine entry temperature. First, a detailed model is established in GT-Power and self-circulation test data has been used to validate the model.
Technical Paper

Dynamic Analysis of Wiper System and Noise Prediction of Blade Reverse

2015-03-30
2015-01-0106
Wiper noise generated in the wiping process is one of the main influence factors affecting the driving comfort. Since the dynamic contact pressure of the contact between a blade and a windshield glass is difficult to be measured, it is also difficult to predict the degree of the wiper noise. In this paper, in the view of the reversal noise problem of a passenger-vehicle windscreen wiper system, the system dynamic models of the both wipers on the sides of the driver and copilot were built as considering the blade deformation and the elastic contact between the blades and the windscreen glass, including the crank pivot, the four linkage mechanism, the wiper blades, the wiper arms and the windscreen glass. The motion of the wiper system and the pressure distributions between the blades and the windscreen glass were analyzed under the half-dry condition.
Journal Article

Comparison of Fires in Lithium-Ion Battery Vehicles and Gasoline Vehicles

2014-04-01
2014-01-0428
Electric vehicles have become more popular and may be involved in fires due to accidents. However, characteristics of fires in electric vehicles are not yet fully understood. The electrolytic solution of lithium-battery vehicles is inflammable, so combustion characteristics and gases generated may differ from those of gasoline cars. Therefore, we conducted fire tests on lithium-ion battery vehicles and gasoline vehicles and investigated the differences in combustion characteristics and gases generated. The fire tests revealed some differences in combustion characteristics. For example, in lithium-ion battery vehicles, the battery temperature remained high after combustion of the body. However, there was almost no difference in the maximum CO concentration measured 0.5 to 1 m above the roof and 1 m from the side of the body. Furthermore, HF was not detected in either type of vehicle when measured at the same positions as for CO.
Technical Paper

Identification of Tire Equivalent Stiffness for Prediction of Vertical Spindle Forces

2011-10-06
2011-28-0093
The research into vibration characteristics of a loaded and rolling tire is essential for the prediction of spindle forces. There are tire vibration characteristics one of which is the first natural frequency of a loaded and rolling tire is lower than that of an unrolling tire. The vibration characteristics, for a loaded and rolling tire, are affected by the effect of rotation, restrictions of the vibration due to road contact, and the behavior of rubber dependent on amplitude strain. The consideration of the degradation of natural frequency is therefore necessary in the tire model for prediction of spindle forces. This paper describes an identification method for the tire equivalent stiffness of a tire model focused on vertical spindle forces. The first mode is dominant in vertical spindle forces. First, the natural frequencies in rolling and unrolling tires are identified by operational impact test.
Technical Paper

Chemical Kinetics Study on Ignition Characteristics of Biodiesel Surrogates

2011-08-30
2011-01-1926
Methyl butanoate (MB) and methyl decanoate (MD) are surrogates for biodiesel fuels. According to computational results with their detailed reaction mechanisms, MB and MD indicate shorter ignition delays than long alkanes such as n-heptane and n-dodecane do at an initial temperature over 1000 K. The high ignitability of these methyl esters was computationally analyzed by means of contribution matrices proposed by some of the authors. Due to the high acidity of an α-H atom in a carbonyl compound, hydroperoxy radicals are generated out of the equilibrium between forward and backward reactions of O₂ addition to methyl ester radicals by the internal transfer of an α-H atom in the initial stage of an ignition process. Some of the hydroperoxy methyl ester radicals can generate OH to activate initial reactions. MB has an efficient CH₃O formation path via CH₃ generated by the β-scission of an MB radical which has a radical site on the α-C atom to the carbonyl group.
Technical Paper

Study on Reliable Automotive Exhaust Acrolein Collection Method

2010-10-25
2010-01-2207
Aldehydes and ketones are known as one of the hazardous air pollutants. Usually, acidified 2,4-dinitrophenylhydrazine (DNPH) solution, or DNPH-impregnated cartridges are used for automotive exhaust carbonyls collection. Then, aldehydes and ketones combined with DNPH are analyzed by HPLC/UV (High Performance Liquid Chromatography/ Ultra Violet Detection). DNPH cartridge is used widely for a good point of the handling although handling of DNPH solution is not so convienient. However, the analytical result of acrolein using DNPH cartridge was known as the low reliability. Acrolein-DNPH is changed to acrolein-DNPH-DNPH in the cartridge with acid atmosphere before extraction. And then, acrorein-DNPH-DNPH is changed to acrorein-DNPH-DNPH-DNPH with an acid atmosphere. As a result of such chemical reaction before extraction, the acrolein-DNPH is detected to low concentration. We found that at the low temperature condition, acrolein-DNPH concentration decrease speed is held down.
Technical Paper

Impact Study of High Biodiesel Blends on Exhaust Emissions to Advanced Aftertreatment Systems

2010-04-12
2010-01-1292
In Biodiesel Fuel Research Working Group(WG) of Japan Auto-Oil Program(JATOP), some impacts of high biodiesel blends have been investigated from the viewpoints of fuel properties, stability, emissions, exhaust aftertreatment systems, cold driveability, mixing in engine oils, durability/reliability and so on. In the impact on exhaust emissions, the impact of high biodiesel blends into diesel fuel on diesel emissions was evaluated. The wide variety of biodiesel blendstock, which included not only some kinds of fatty acid methyl esters(FAME) but also hydrofined biodiesel(HBD) and Fischer-Tropsch diesel fuel(FTD), were selected to evaluate. The main blend level evaluated was 5, 10 and 20% and the higher blend level over 20% was also evaluated in some tests. The main advanced technologies for exhaust aftertreatment systems were diesel particulate filter(DPF), Urea selective catalytic reduction (Urea-SCR) and the combination of DPF and NOx storage reduction catalyst(NSR).
Technical Paper

Calculation of Hydrogen Consumption for Fuel Cell Vehicles by Exhaust Gas Formulation

2008-04-14
2008-01-0465
The hydrogen consumption of fuel cell vehicles (FCV) can be measured by the gravimetric, pressure and flow methods within a ±1% error. These are the methods acknowledged by ISO and SAE [1, 2], but require the test vehicles to be modified in order to supply hydrogen from an external, rather than the onboard tank. Consequently, technical assistance of the vehicle manufacturer is necessary for this modification, while various components in the test vehicle must be readjusted. For these reasons, a measurement method free of vehicle modification is in great demand. The present study therefore developed an “oxygen balance method” which determines the amount of hydrogen that has reacted with oxygen in the fuel cell stack by measuring the oxygen concentration in exhaust gas.
Technical Paper

Thermal Behavior in Hydrogen Storage Tank for FCV on Fast Filling (2nd Report)

2008-04-14
2008-01-0463
If a compressed hydrogen tank for vehicles is filled with hydrogen gas more quickly, the gas temperature in the tank will increase. In this study, we conducted hydrogen gas filling tests using the TYPE 3 and TYPE 4 tanks. During the tests, we measured the temperature of the internal liner surface and investigated its relationship with the gas temperature in the tank. We found that the gas temperature in the upper portion of the TYPE 4 tank rose locally during filling and that the temperature of the internal liner surface near that area also rose, resulting in a temperature higher than the gas temperature at the center of the tank. To keep the maximum temperature in the tank below the designed temperature (85°C) during filling and examine the representative tank internal temperatures, it is important to examine filling methods that can suppress local rises of tank internal temperature.
Technical Paper

Development of Fuel Consumption Measurement Method for Fuel Cell Vehicle - Flow Method corresponding to Pressure Pulsation of Hydrogen flow -

2007-07-23
2007-01-2008
Japan Automobile Research Institute (JARI) have developed the flow method as an easy way of measuring hydrogen consumption of fuel cell vehicles (FCVs) in real-time. A 2004 study on fuel consumption of five models of FCVs, measured by thermal flowmeters and based on gravimetric method, exhibited measurement errors within ±1% range for three models, but the errors were as large as -8% for two models that showed significant pulsation in hydrogen consumption flow. Assuming that the pulsation is the cause of errors in the flow method, we analyzed influences of pulsation in each flowmeter from two points (frequency and amplitude) and found that pulsation indeed caused flowmeter errors. Expansion chambers (Buffers) and throttle valves (regulators) were confirmed to have an effect in attenuating pulsation. Amplitude of pulsation shrunk to one tenths when such pulsation-reducing instruments were introduced between pulsating FCVs and flowmeters and were put to test.
Technical Paper

Oxidation Degradation and Acid Generation in Diesel Fuel Containing 5% FAME

2007-07-23
2007-01-2027
Compared with diesel fuel, FAME is relatively unstable and readily generates acids such as acetic acid and propionic acid. When FAME-blended diesel fuel is used in existing diesel vehicles, it is important to maintain the concentration of FAME-origin acid in the fuel at an appropriately low level to assure vehicle safety. In the present study, the oxidation of diesel fuel containing 5% FAME is investigated. Several kinds of FAMEs were examined, including reagents such as methyl linoleate and methyl linolenate, as well as commercially available products. The level of acid, peroxide, water, and methanol and the pressure of the testing vessel were measured. The result shows that unsaturated FAMEs that have two or more double bonds are unstable. Also, water is generated by oxidation of FAME blended diesel fuel, accelerating corrosion of the terne sheet.
X