Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Diesel Engine Coordinated Control for AT Upshift Process

2016-09-27
2016-01-8080
The ever-growing number of interacting electronic vehicle control systems requires new control algorithms to manage the increasing system complexity. As a result, torque-based control architecture has been popular for its easy extension as the torque demand variable is the only interface between the engine control algorithms and other vehicle control systems. Under the torque-based control architecture, the engine and AT coordinated control for upshift process is investigated. Based on the dynamics analysis, quantitative relationship between the turbine torque of HTC and output shaft torque of AT has been obtained. Then the coordinated control strategy has been developed to smooth the torque trajectory of AT output shaft. The designed control strategy is tested on a powertrain simulation model in MATLAB/Simulink and a test bench. Through simulation, the shift time range in which the engine coordinated control strategy is effective is acquired.
Technical Paper

Research on the Cylinder-by-cylinder Variations Detection and Control Algorithm of Diesel Engine

2015-04-14
2015-01-1644
The cylinder-by-cylinder variations have many bad impacts on the engine performance, such as increasing the engine speed fluctuation, enlarging the torsional vibration and noise. To deal with this problem, the impact mechanism of cylinder-by-cylinder variations on low order torsional vibration has been studied in this paper, and subsequently a new individual cylinder control strategy was designed by processing the instantaneous crankshaft rotation speed signal, detecting the cylinder-by-cylinder variation and using feed-back control. The acceleration characteristics of each cylinder in each engine cycle were compared with each other to extract the variation index. The feed-back control algorithm was based on the regulation of the fuel injection according to the detected variation level.
X