Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Computer-Aided Engineering Modeling and Automation on High-Performance Computing

2022-06-27
2022-01-5051
The computer-aided engineering (CAE) automation study requires a large disk space and a premium processor. If all finite element (FE) models run locally, it may crash the local machine, and if the FE model runs on high-performance computing (HPC), transferring data from the server to the local machine to do the optimization may cause latency issues. This automation study provides a unique road map to optimize the design by working efficiently using the initial setup on the local machine, running an analysis of a large number of FE models on HPC, and performing optimization on the server. CAE Automation process has been demonstrated using a case study on a driveline component, crush spacer. Crush spacer is a very critical engineering design because, first, it provides the minimum required preload to the bearing inner races to keep them in position and, second, it endures a number of duty cycles.
Technical Paper

Simplifying the Structural Design of the Advanced Pedestrian Legform Impactor for Use in Standardized Testing

2018-04-03
2018-01-1049
The advanced Pedestrian Legform Impactor (aPLI) incorporates a number of enhancements for improved lower limb injury prediction capability with respect to its predecessor, the FlexPLI. The aPLI also incorporates a simplified upper body part (SUBP), connected to the lower limb via a mechanical hip joint, that expands the impactor’s applicability to evaluate pedestrian’s lower limb injury risk also in high-bumper cars.As the aPLI has been developed to be used in standardized testing, further considerations on the impactor’s manufacturability, robustness, durability, usability, and repeatability need to be accounted for.. The aim of this study is to define and verify, by means of numerical analysis, a battery of design modifications that may simplify the manufacturing and use of physical aPLIs, without reducing the impactors’ biofidelity. Eight candidate parameters were investigated in a two-step numerical analysis.
Technical Paper

Optimal Specifications for the Advanced Pedestrian Legform Impactor

2017-11-13
2017-22-0014
This study addresses the virtual optimization of the technical specifications for a recently developed Advanced Pedestrian Legform Impactor (aPLI). The aPLI incorporates a number of enhancements for improved lower limb injury predictability with respect to its predecessor, the FlexPLI. It also incorporates an attached Simplified Upper Body Part (SUBP) that enables the impactor’s applicability to evaluate pedestrian’s lower limb injury risk also with high-bumper cars. The response surface methodology was applied to optimize both the aPLI’s lower limb and SUBP specifications, while imposing a total mass upper limit of 25 kg that complies with international standards for maximum weight lifting allowed for a single operator in the laboratory setting. All parameters were virtually optimized considering variable interaction, which proved critical to avoid misleading specifications.
Technical Paper

Research on Severity Class Evaluation Based on Various Crash Situations Involved with Motorcycles for ISO 26262

2016-11-08
2016-32-0057
ISO 26262 was established in 2011 as a functional safety standard for road vehicles. This standard provides safety requirements according to ASIL (Automotive Safety Integrity Level) in order to avoid unreasonable residual risk caused by malfunctioning behavior of electrical and/or electronic systems. The ASIL is determined by considering the estimate of three factors including injury severity. While applicable only to passenger cars at present, motorcycles will be included in the scope of application of ISO 26262 in the next revision. Therefore, our previous study focused on severity class evaluation for motorcycles. A method of classifying injury severity according to vehicle speed was developed on the basis of accident data. In addition, a severity table for motorcycles was created using accident data in representative collision configurations involved with motorcycles in Japan.
Journal Article

Research on Method for Classifying Injury Severity Using Motorcycle Accident Data for ISO 26262

2015-11-17
2015-32-0714
ISO 26262 was established in 2011 as a functional safety standard for passenger cars. In this standard, ASILs (Automotive Safety Integrity Levels) representing safety levels for passenger cars are determined by evaluating the hazardous events associated with each item constituting an electrical and/or electronic safety-related system according to three evaluation criteria including injury severity. On the other hand, motorcycles will be included in the scope of application of ISO 26262 in the next revision. It is expected that a severity evaluation for motorcycles will be needed because motorcycles are clearly different from passenger cars in vehicle mass and structure. Therefore, this study focused on severity class evaluation for motorcycles. A method of classifying injury severity according to vehicle speed was developed on the basis of accident data.
Journal Article

Research on Validation Metrics for Multiple Dynamic Response Comparison under Uncertainty

2015-04-14
2015-01-0443
Computer programs and models are playing an increasing role in simulating vehicle crashworthiness, dynamic, and fuel efficiency. To maximize the effectiveness of these models, the validity and predictive capabilities of these models need to be assessed quantitatively. For a successful implementation of Computer Aided Engineering (CAE) models as an integrated part of the current vehicle development process, it is necessary to develop objective validation metric that has the desirable metric properties to quantify the discrepancy between multiple tests and simulation results. However, most of the outputs of dynamic systems are multiple functional responses, such as time history series. This calls for the development of an objective metric that can evaluate the differences of the multiple time histories as well as the key features under uncertainty.
Journal Article

Development of a Comprehensive Validation Method for Dynamic Systems and Its Application on Vehicle Design

2015-04-14
2015-01-0452
Simulation based design optimization has become the common practice in automotive product development. Increasing computer models are developed to simulate various dynamic systems. Before applying these models for product development, model validation needs to be conducted to assess their validity. In model validation, for the purpose of obtaining results successfully, it is vital to select or develop appropriate metrics for specific applications. For dynamic systems, one of the key obstacles of model validation is that most of the responses are functional, such as time history curves. This calls for the development of a metric that can evaluate the differences in terms of phase shift, magnitude and shape, which requires information from both time and frequency domain. And by representing time histories in frequency domain, more intuitive information can be obtained, such as magnitude-frequency and phase-frequency characteristics.
Journal Article

A Data Mining-Based Strategy for Direct Multidisciplinary Optimization

2015-04-14
2015-01-0479
One of the major challenges in multiobjective, multidisciplinary design optimization (MDO) is the long computational time required in evaluating the new designs' performances. To shorten the cycle time of product design, a data mining-based strategy is developed to improve the efficiency of heuristic optimization algorithms. Based on the historical information of the optimization process, clustering and classification techniques are employed to identify and eliminate the low quality and repetitive designs before operating the time-consuming design evaluations. The proposed method improves design performances within the same computation budget. Two case studies, one mathematical benchmark problem and one vehicle side impact design problem, are conducted as demonstration.
Journal Article

Influence of the Upper Body of Pedestrians on Lower Limb Injuries and Effectiveness of the Upper Body Compensation Method of the FlexPLI

2015-04-14
2015-01-1470
Current legform impact test methods using the FlexPLI have been developed to protect pedestrians from lower limb injuries in collisions with low-bumper vehicles. For this type of vehicles, the influence of the upper body on the bending load generated in the lower limb is compensated by setting the impact height of the FlexPLI 50 mm above that of pedestrians. However, neither the effectiveness of the compensation method of the FlexPLI nor the influence of the upper body on the bending load generated in the lower limb of a pedestrian has been clarified with high-bumper vehicles. In this study, therefore, two computer simulation analyses were conducted in order to analyze: (1) The influence of the upper body on the bending load generated in the lower limb of a pedestrian when impacted by high-bumper vehicles and (2) The effectiveness of the compensation method for the lack of the upper body by increasing impact height of the FlexPLI for high-bumper vehicles.
Technical Paper

Evaluation of Air Bag Electronic Sensing System Collision Performance through Laboratory Simulation

2015-04-14
2015-01-1484
Since their inception, the design of airbag sensing systems has continued to evolve. The evolution of air bag sensing system design has been rapid. Electromechanical sensors used in earlier front air bag applications have been replaced by multi-point electronic sensors used to discriminate collision mechanics for potential air bag deployment in front, side and rollover accidents. In addition to multipoint electronic sensors, advanced air bag systems incorporate a variety of state sensors such as seat belt use status, seat track location, and occupant size classification that are taken into consideration by air bag system algorithms and occupant protection deployment strategies. Electronic sensing systems have allowed for the advent of event data recorders (EDRs), which over the past decade, have provided increasingly more information related to air bag deployment events in the field.
Technical Paper

Fluid Structure Interaction Simulations Applied to Automotive Aerodynamics

2015-04-14
2015-01-1544
One of the passive methods to reduce drag on the unshielded underbody of a passenger road vehicle is to use a vertical deflectors commonly called air dams or chin spoilers. These deflectors reduce the flow rate through the non-streamlined underbody and thus reduce the drag caused by underbody components protruding in to the high speed underbody flow. Air dams or chin spoilers have traditionally been manufactured from hard plastics which could break upon impact with a curb or any solid object on the road. To alleviate this failure mode vehicle manufacturers are resorting to using soft plastics which deflect and deform under aerodynamic loading or when hit against a solid object without breaking in most cases. This report is on predicting the deflection of soft chin spoiler under aerodynamic loads. The aerodynamic loads deflect the chin spoiler and the deflected chin spoiler changes the fluid pressure field resulting in a drag change.
Technical Paper

Heat Rejection and Skin Temperatures of an Externally Cooled Exhaust Manifold

2015-04-14
2015-01-1736
The heat rejection rates and skin temperatures of a liquid cooled exhaust manifold on a 3.5 L Gasoline Turbocharged Direct Injection (GTDI) engine are determined experimentally using an external cooling circuit, which is capable of controlling the manifold coolant inlet temperature, outlet pressure, and flow rate. The manifold is equipped with a jacket that surrounds the collector region and is cooled with an aqueous solution of ethylene-glycol-based antifreeze to reduce skin temperatures. Results were obtained by sweeping the manifold coolant flow rate from 2.0 to 0.2 gpm at 12 different engine operating points of increasing brake power up to 220 hp. The nominal coolant inlet temperature and outlet pressure were 85 °C and 13 psig, respectively. Data were collected under steady conditions and time averaged. For the majority of operating conditions, the manifold heat rejection rate is shown to be relatively insensitive to changes in manifold coolant flow rate.
Journal Article

An Ensemble Approach for Model Bias Prediction

2013-04-08
2013-01-1387
Model validation is a process of determining the degree to which a model is an accurate representation of the real world from the perspective of the intended uses of the model. In reliability based design, the intended use of the model is to identify an optimal design with the minimum cost function while satisfying all reliability constraints. It is pivotal that computational models should be validated before conducting the reliability based design. This paper presents an ensemble approach for model bias prediction in order to correct predictions of computational models. The basic idea is to first characterize the model bias of computational models, then correct the model prediction by adding the characterized model bias. The ensemble approach is composed of two prediction mechanisms: 1) response surface of model bias, and 2) Copula modeling of a series of relationships between design variables and the model bias, between model prediction and the model bias.
Journal Article

A New Approach for Very Low Particulate Mass Emissions Measurement

2013-04-08
2013-01-1557
Pending reductions in light duty vehicle PM emissions standards from 10 to 3 mg/mi and below will push the limits of the gravimetric measurement method. At these levels the PM mass collected approaches the mass of non-particle gaseous species that adsorb onto the filter from exhaust and ambient air. This introduces an intrinsic lower limit to filter based measurement that is independent of improvements achieved in weighing metrology. The statistical variability of back-up filter measurements at these levels makes them an ineffective means for correcting the adsorption artifact. The proposed subtraction of a facility based estimate of the artifact will partially alleviate the mass bias from adsorption, but its impact on weighing variability remains a problem that can reach a significant fraction of the upcoming 3 and future 1 mg/mi standards. This paper proposes an improved PM mass method that combines the gravimetric filter approach with real time aerosol measurement.
Technical Paper

Investigation of Nozzle Clearance Effects on a Radial Turbine: Aerodynamic Performance and Forced Response

2013-04-08
2013-01-0918
Variable nozzle turbine (VNT) technology has become a popular technology for diesel engine application. To pivot the nozzle vane and adjust the turbine operating condition, nozzle clearances are inevitable on both the hub and shroud side of turbine housing. Leakage flow formed inside the nozzle clearance leads to extra flow loss and makes the nozzle exit flow less uniform, thus further affects downstream aerodynamic performance of the rotor. As the leakage mixing with nozzle wake flow, the process is highly unsteady, which increases the fluctuation amplitude of transient load on the rotating turbine wheels. In present paper, firstly steady CFD analysis of a turbocharger turbine was performed at different nozzle openings. Then unsteady simulation of the turbine was carried out to investigate the interaction between the leakage flow through nozzle clearance and the main flow. Nozzle clearance's effect on turbine performance was investigated.
Technical Paper

Effects of Pore Distributions on Ductility of Thin-Walled High Pressure Die-Cast Magnesium

2013-04-08
2013-01-0644
In this paper, a microstructure-based three-dimensional (3D) finite element modeling method is adopted to investigate the effects of porosity in thin-walled high pressure die-cast (HPDC) magnesium alloys on their ductility. For this purpose, the cross-sections of AM60 casting samples are first examined using optical microscope and X-ray tomography to obtain the general information on the pore distribution features. The experimentally observed pore distribution features are then used to generate a series of synthetic microstructure-based 3D finite element models with different pore volume fractions and pore distribution features. Shear and ductile damage models are adopted in the finite element analyses to induce the fracture by element removal, leading to the prediction of ductility.
Journal Article

Development and Characteristics of a Burner for Localized Fire Tests and an Evaluation of Those Fire Tests

2012-04-16
2012-01-0987
We have developed a new propane burner that satisfies the requirements of localized fire test which was presented in SAE technical paper 2011-01-0251. This paper introduces the specifications of this burner and reports its characteristics as determined from various fire exposure tests that we conducted in order to gather data. These tests included temperature and heat flux distribution on cylinder surfaces, which would be useful for the design of automotive compressed fuel cylinders. Our fire exposure tests included localized and engulfing fire tests to compare TPRD activation time, cylinder burst pressure and other parameters between different flame configurations and tests to identify the effects of an automotive compressed fuel cylinder on localized fire test results.
Journal Article

Optimized AHSS Structures for Vehicle Side Impact

2012-04-16
2012-01-0044
Advanced high strength steels (AHSS) have been widely accepted as a material of choice in the automotive industry to balance overall vehicle weight and stringent vehicle crash test performance targets. Combined with efficient use of geometry and load paths through shape and topology optimization, AHSS has enabled vehicle manufacturers to obtain the highest possible ratings in safety evaluations by the Insurance Institute for Highway Safety (IIHS) and the National Highway Traffic Safety Administration (NHTSA). In this study, vehicle CAE side impact models were used to evaluate three side impact crash test conditions (IIHS side impact, NHTSA LINCAP and FMVSS 214 side pole) and the IIHS roof strength test condition and to identify several key components affecting the side impact test performance. HyperStudy® optimization software and LS-DYNA® nonlinear finite element software were utilized for shape and gauge optimization.
Journal Article

The Effect of Piston Cooling Jets on Diesel Engine Piston Temperatures, Emissions and Fuel Consumption

2012-04-16
2012-01-1212
A Ford 2.4-liter 115PS light-duty diesel engine was modified to allow solenoid control of the oil feed to the piston cooling jets, enabling these to be switched on or off on demand. The influence of the jets on piston temperatures, engine thermal state, gaseous emissions and fuel economy has been investigated. With the jets switched off, piston temperatures were measured to be between 23 and 88°C higher. Across a range of speed-load points, switching off the jets increased engine-out emissions of NOx typically by 3%, and reduced emissions of CO by 5-10%. Changes in HC were of the same order and were reductions at most conditions. Fuel consumption increased at low-speed, high-load conditions and decreased at high-speed, low-load conditions. Applying the results to the NEDC drive cycle suggests active on/off control of the jets could reduce engine-out emissions of CO by 6%, at the expense of a 1% increase in NOx, compared to the case when the jets are on continuously.
Journal Article

Investigating the Potential to Reduce Crankshaft Main Bearing Friction During Engine Warm-up by Raising Oil Feed Temperature

2012-04-16
2012-01-1216
Reducing friction in crankshaft bearings during cold engine operation by heating the oil supply to the main gallery has been investigated through experimental investigations and computational modelling. The experimental work was undertaken on a 2.4l DI diesel engine set up with an external heat source to supply hot oil to the gallery. The aim was to raise the film temperature in the main bearings early in the warm up, producing a reduction in oil viscosity and through this, a reduction in friction losses. The effectiveness of this approach depends on the management of heat losses from the oil. Heat transfer along the oil pathway to the bearings, and within the bearings to the journals and shells, reduces the benefit of the upstream heating.
X