Refine Your Search

Search Results

Viewing 1 to 20 of 20
Journal Article

Research on Method for Classifying Injury Severity Using Motorcycle Accident Data for ISO 26262

2015-11-17
2015-32-0714
ISO 26262 was established in 2011 as a functional safety standard for passenger cars. In this standard, ASILs (Automotive Safety Integrity Levels) representing safety levels for passenger cars are determined by evaluating the hazardous events associated with each item constituting an electrical and/or electronic safety-related system according to three evaluation criteria including injury severity. On the other hand, motorcycles will be included in the scope of application of ISO 26262 in the next revision. It is expected that a severity evaluation for motorcycles will be needed because motorcycles are clearly different from passenger cars in vehicle mass and structure. Therefore, this study focused on severity class evaluation for motorcycles. A method of classifying injury severity according to vehicle speed was developed on the basis of accident data.
Journal Article

Development of a Comprehensive Validation Method for Dynamic Systems and Its Application on Vehicle Design

2015-04-14
2015-01-0452
Simulation based design optimization has become the common practice in automotive product development. Increasing computer models are developed to simulate various dynamic systems. Before applying these models for product development, model validation needs to be conducted to assess their validity. In model validation, for the purpose of obtaining results successfully, it is vital to select or develop appropriate metrics for specific applications. For dynamic systems, one of the key obstacles of model validation is that most of the responses are functional, such as time history curves. This calls for the development of a metric that can evaluate the differences in terms of phase shift, magnitude and shape, which requires information from both time and frequency domain. And by representing time histories in frequency domain, more intuitive information can be obtained, such as magnitude-frequency and phase-frequency characteristics.
Journal Article

A Data Mining-Based Strategy for Direct Multidisciplinary Optimization

2015-04-14
2015-01-0479
One of the major challenges in multiobjective, multidisciplinary design optimization (MDO) is the long computational time required in evaluating the new designs' performances. To shorten the cycle time of product design, a data mining-based strategy is developed to improve the efficiency of heuristic optimization algorithms. Based on the historical information of the optimization process, clustering and classification techniques are employed to identify and eliminate the low quality and repetitive designs before operating the time-consuming design evaluations. The proposed method improves design performances within the same computation budget. Two case studies, one mathematical benchmark problem and one vehicle side impact design problem, are conducted as demonstration.
Technical Paper

Evaluation of Air Bag Electronic Sensing System Collision Performance through Laboratory Simulation

2015-04-14
2015-01-1484
Since their inception, the design of airbag sensing systems has continued to evolve. The evolution of air bag sensing system design has been rapid. Electromechanical sensors used in earlier front air bag applications have been replaced by multi-point electronic sensors used to discriminate collision mechanics for potential air bag deployment in front, side and rollover accidents. In addition to multipoint electronic sensors, advanced air bag systems incorporate a variety of state sensors such as seat belt use status, seat track location, and occupant size classification that are taken into consideration by air bag system algorithms and occupant protection deployment strategies. Electronic sensing systems have allowed for the advent of event data recorders (EDRs), which over the past decade, have provided increasingly more information related to air bag deployment events in the field.
Technical Paper

Comparing Uncertainty Quantification with Polynomial Chaos and Metamodel-Based Strategies for Computationally Expensive CAE Simulations and Optimization Applications

2015-04-14
2015-01-0437
Robustness/Reliability Assessment and Optimization (RRAO) is often computationally expensive because obtaining accurate Uncertainty Quantification (UQ) may require a large number of design samples. This is especially true where computationally expensive high fidelity CAE simulations are involved. Approximation methods such as the Polynomial Chaos Expansion (PCE) and other Response Surface Methods (RSM) have been used to reduce the number of time-consuming design samples needed. However, for certain types of problems require the RRAO, one of the first question to consider is which method can provide an accurate and affordable UQ for a given problem. To answer the question, this paper tests the PCE, RSM and pure sampling based approaches on each of the three selected test problems: the Ursem Waves mathematical function, an automotive muffler optimization problem, and a vehicle restraint system optimization problem.
Journal Article

Optimized AHSS Structures for Vehicle Side Impact

2012-04-16
2012-01-0044
Advanced high strength steels (AHSS) have been widely accepted as a material of choice in the automotive industry to balance overall vehicle weight and stringent vehicle crash test performance targets. Combined with efficient use of geometry and load paths through shape and topology optimization, AHSS has enabled vehicle manufacturers to obtain the highest possible ratings in safety evaluations by the Insurance Institute for Highway Safety (IIHS) and the National Highway Traffic Safety Administration (NHTSA). In this study, vehicle CAE side impact models were used to evaluate three side impact crash test conditions (IIHS side impact, NHTSA LINCAP and FMVSS 214 side pole) and the IIHS roof strength test condition and to identify several key components affecting the side impact test performance. HyperStudy® optimization software and LS-DYNA® nonlinear finite element software were utilized for shape and gauge optimization.
Technical Paper

A Model Validation Approach for Various Design Configurations with Insufficient Experimental Data for Model Accuracy Check

2012-04-16
2012-01-0228
Analytical models (math or computer simulation models) are typically built on the basis of many assumptions and simplifications and hence model prediction could be inaccurate in intended applications. Model validation is thus critical to quantify and improve the degree of accuracy of these models. So far, little work considers model validation for various design configurations so that model prediction is accurate in the intended design space. Furthermore, there is a lack of effective approaches that can be used to quantify model accuracy considering different number of experimental data. To overcome these limitations, objective of this paper is to develop a model validation approach for various design configurations with a reference metric for model accuracy check considering different number of experimental data.
Technical Paper

Assessment Method of Effectiveness of Passenger Seat Belt Reminder

2012-04-16
2012-01-0050
Seat belts for rear passengers are not commonly used, even though they can significantly reduce fatalities. A passenger seat belt reminder (PSBR) is installed in order to encourage seat belt use, but the effectiveness of PSBRs on the rear seat passenger has not yet been proven. We have developed a methodology to assess PSBR effectiveness. There are two pathways to encourage seat belt use. The first is that PSBR directly facilitates the passenger's use. The second is to motivate the driver request passengers to use seat belts. In the experiment, we asked participants sitting in the driver's seat to select one of five ranks of likelihood to encourage the passenger when a PSBR was presented. We also asked participants sitting in the rear passenger seat to select the rank of likelihood to use the belt voluntarily with PSBR and that to use the belt when the driver requested. The degree of likelihood was quantified by averaging the assigned percentage values to the ranks.
Journal Article

Pressure Based Sensing Approach for Front Impacts

2011-04-12
2011-01-1443
This study demonstrates the use of pressure sensing technology to predict the crash severity of frontal impacts. It presents an investigation of the pressure change in the front structural elements (bumper, crush cans, rails) during crash events. A series of subsystem tests were conducted in the laboratory that represent a typical frontal crash development series and provided empirical data to support the analysis of the concept. The pressure signal energy at different sensor mounting locations was studied and design concepts were developed for amplifying the pressure signal. In addition, a pressure signal processing methodology was developed that relies on the analysis of the air flow behavior by normalizing and integrating the pressure changes. The processed signal from the pressure sensor is combined with the restraint control module (RCM) signals to define the crash severity, discriminate between the frontal crash modes and deploy the required restraint devices.
Technical Paper

Improvement of Foot FE Model Based on the Movement of Bones during Heel Impact

2004-03-08
2004-01-0313
Frontal vehicle collisions often result in foot injury of the front seat occupant. Therefore, it is very important to understand the mechanism of the foot injury. For that purpose, several impact experiments have been conducted using a partial human lower extremity. In addition, recently several impact response analyses using a human FE model have been conducted to understand the mechanism. In the present circumstances, a verified FE model is needed, and the verification of kinematical biofidelity is very important in the first place. In this connection, a foot FE model (based on an existing human FE model) was improved to create a foot FE model, which can be used for study of foot injury mechanism in this research. And the kinematics of foot bones of the model was verified by comparing the bone movements of the FE model with the movement of human foot during heel impact.
Technical Paper

Evaluation of Passenger Compartment Strength in Car-to-Car Frontal Crashes

2003-03-03
2003-01-0909
The strength of the passenger compartment is crucial for occupant safety in severe car-to-car frontal offset collisions. Car-to-car crash tests including minicars were carried out, and a low end of crash force was observed in a final stage of impact for cars with large intrusion into the passenger compartment. From overload tests, the strength could be evaluated from collapsing the passenger compartment. Based on the test, the end of crash force as well as the maximum forces might be important criteria to determine the passenger compartment strength, which in turn could predict the large intrusion into the passenger compartment in car-to-car crashes. A 64 km/h ODB test was insufficient to evaluate the potential strength of the passenger compartment because the maximum forces could not be determined in this test.
Technical Paper

J-NCAP: Today and tomorrow

2001-06-04
2001-06-0157
The New Car Assessment Program in Japan (JNCAP) was launched in 1995 in order to improve car safety performance. According to this program, installation conditions of safety devices and the results for braking performance and full- frontal crash tests are published every year. Introduction of JNCAP significantly increases the installation rate of safety devices and contributes much in enhancement of safety as seen in the decrease in the average injury severity of drivers and passengers. Side impact and offset frontal crash tests were introduced in 1999 and 2000, respectively. At present, the overall crash safety rating is carried out based on the results of the full-frontal, offset frontal, and side impact tests.
Technical Paper

Japanese research activity on future side impact test procedures

2001-06-04
2001-06-0155
This paper summarizes a future side impact test procedure based on the Japanese presentation at the recent IHRA Side Impact WG meeting. Under current Japanese regulations, the MDB specifications and test procedures were determined based on a market study more than ten years ago. Thus, they may not reflect current automobile characteristics, the actual accident situation, and crash test results. In this study (1) the vehicle types, velocity of striking and struck vehicles, body injury regions, causes of injuries, etc., are reviewed with reference to the latest Japanese side impact accident data. The occupant percentages for the non-struck-side, rear seat and for female occupants as well as the injury levels were analyzed. (2) To determine the MDB specifications, based on data from passenger car models registered in 1998, the curb mass, geometry and stiffness were examined. (3) For factorial analysis, side impact tests were performed as for real accidents.
Technical Paper

JNCAP: Developing overall rating protocol

2001-06-04
2001-06-0156
The Japan New Car Assessment Program (JNCAP) was launched in 1995 in order to improve car safety performance. According to this program, installation conditions of safety devices and the results for braking performance and full- frontal crash test are published every year. The side impact test was introduced in 1999. In 2000, the offset frontal crash test was also introduced. From the viewpoint of such a diversification of the crash tests, an overall assessment method for the safety of cars which reflects road accidents has been demanded. In this study, we have examined a new overall assessment method capable of reflecting the traffic accident situation in Japan using methods employed or planned by USA-NCAP, Euro-NCAP, TUB-NCAP and others as references. As the basic concept, JNCAP conducts three types of crash tests including the full-frontal crash test, offset frontal crash test, and side impact test to assess the dummy injury parameters.
Technical Paper

Research on bus passenger safety in frontal impacts

2001-06-04
2001-06-0210
Guidelines with regard to the body strength of buses have been drawn up in Japan. We now pass to the second step in research to assure the greater safety of bus crews and passengers by launching a study on further reduction of collision injuries to bus occupants. As a way to reduce such passenger injuries, our focus is the optimization of energy absorption, the arrangement of equipment on the passenger seat back, the seat frame construction, mounting and so on. The study was conducted using an experimental method together with FEM computer simulation. The findings from a sled impact test simulating a seat in a bus in a frontal collision are stated as follows. 1.Further consideration should be given to the present conventional ELR two-point seat belt. 2.One way to reduce passenger injury is to optimize the space between seats.
Technical Paper

Correlation of Driver Inflator Predictor Variables with the Viscous Criterion for the Mid-Sized Male, Instrumented Test Dummy in the Chest-on-Module Condition

1999-03-01
1999-01-0763
A new inflator specification, the “inflator thrust variable,” was developed to better explain measured mid-sized male, instrumented test dummy responses in the chest-on-module test condition. Specifically, controlled laboratory experiments were conducted with non-production, driver airbag modules with inflators of various outputs and gas constituents in an effort to assess their effects on a pertinent occupant response. Regression analyses showed that the inflator thrust variable is a better predictor of the observed variation in peak viscous criterion responses than either peak tank pressure or the related pressure rise rate when inflators of differing gas composition were compared.
Technical Paper

Development of Simulation Model and Pedestrian Dummy

1999-03-01
1999-01-0082
Honda has been studying ways of improving vehicle design to reduce the severity of pedestrian injury. Full-scale test using a pedestrian dummy is an important way to assess the aggressiveness of a vehicle to pedestrians. However, from test results it is concluded that current pedestrian dummies have stiffer characteristics than Post Mortem Human Subjects (PMHS). Also, the dummy kinematics during a collision is different from that of a human body. Because of the limitations of current dummies, it was decided to develop a new pedestrian dummy. At the first stage of the project, a computer simulation model that represented the PMHS tests was developed. Joint characteristics obtained from the simulation model were used in building a new pedestrian dummy which has been named Polar I. The advanced frontal crash test dummy, known as Thor, was selected as the base dummy. Modifications were made for the thorax, spine, knee etc.
Technical Paper

Performance Evaluation of Impact Responses of the Sid-Iis Small Side Impact Dummy

1998-05-31
986149
A series of side impact tests have been conducted to evaluate the biofidelity of the latest prototype of a small side impact dummy, SID-II s β+(plus). The tests were lateral impacts for the thorax, shoulder, and pelvis, as well as lateral drops for the head, thorax, abdomen, and pelvis. The test data were compared to the response target corridors that were estimated by scaling the cadaver test data to a smaller occupant. The test results show that the head, should, thorax, abdomen and pelvis of the SID-II s β+ either completely or close to meets the response target corridors, and that its biofidelity has been improved from the previous dummy SID II s B-prototype.
Technical Paper

A Study of Motorcycle Leg Protection

1985-01-01
856126
Researchers concerned with motorcycle occupant protection have attempted to develop ways to protect the motorcycle occupant from injury. In the hope of finding a means to protect the motorcycle occupant's lower extremities, the authors have investigated past research, designed a device that incorporates an energy-absorbing component, tested the device in a series of collisions with automobiles, and performed an analysis of the test results to assess the merits of the new device. Results show that although the device may under certain circumstances reduce lower leg injuries, there may be increased potential for upper leg, chest, and head injuries
Technical Paper

Ford “S” Frame

1969-02-01
690004
Since statistics indicate that front impact is the major accident type, Ford has been studying energy-absorbing structures for some time. Early designs such as the “ball and tube” and “rail splitter” were discarded in favor of the “S” frame. Details of the design approach and testing are given in this paper. Design objectives were increased effective collapse distance, compatibility with production practices, and maintenance of satisfactory noise, vibration, and harshness levels. Safety objectives are improved passenger compartment integrity and reduction of seat belt loads. Barrier crash tests at 30 mph (equivalent to collision into standing vehicle at 50 mph) were used to evaluate the design of the “S” frame. Results of testing indicate that occupant restraint with seat belts, combined with front end structural improvements, offer the most promise for injury reduction during service front impact accidents.
X