Refine Your Search

Topic

Author

Search Results

Journal Article

Mars Science Laboratory Mechanically Pumped Fluid Loop for Thermal Control - Design, Implementation, and Testing

2009-07-12
2009-01-2437
The Mars Science Laboratory (MSL) mission to land a large rover on Mars is being prepared for Launch in 2011. A Multi-Mission Radioisotope Thermoelectric Generator (MMRTG) on the rover provides an electrical power of 110 W for use in the rover and the science payload. Unlike the solar arrays, MMRTG provides a constant electrical power during both day and night for all seasons (year around) and latitudes. The MMRTG dissipates about 2000 W of waste heat to produce the desired electrical power. One of the challenges for MSL Rover is the thermal management of the large amount of MMRTG waste heat. During operations on the surface of Mars this heat can be harnessed to maintain the rover and the science payload within their allowable limits during nights and winters without the use of electrical survival heaters. A mechanically pumped fluid loop heat rejection and recovery system (HRS) is used to pick up some of this waste heat and supply it to the rover and payload.
Journal Article

Start-Up Characteristics and Gravity Effects on a Medium/High-Lift Heat Pump using Advanced Hybrid Loop Technology

2008-06-29
2008-01-1959
Thermal characterization was performed on a vapor compression heat pump using a novel, hybrid two phase loop design. Previous work on this technology has demonstrated its ability to provide passive phase separation and flow control based on capillary action. This provides high quality vapor to the compressor without relying on gravity-based phase separation or other active devices. This paper describes the subsequent work done to characterize evaporator performance under various startup scenarios, tilt angles, and heat loads. The use of a thermal expansion valve as a method to regulate operation was investigated. The effect of past history of use on startup behavior was also studied. Testing under various tilt angles showed evaporator performance to be affected by both adverse and favorable tilts for the given compressor. And depending on the distribution of liquid in the system upon startup, markedly different performance can result for the same system settings and heat loads.
Technical Paper

Thermal Design of the Mars Science Laboratory Powered Descent Vehicle

2008-06-29
2008-01-2001
NASA's Mars Science Laboratory mission will use a Powered Descent Vehicle to accurately and safely land a roving, robotic laboratory on the surface of Mars. The precision landing systems employed on this vehicle are exposed to a wide range of mission environments from deep space cruise to atmospheric descent and require a robust and adaptable thermal design. This paper discusses the overall thermal design philosophy of the MSL Powered Descent Vehicle and presents analysis of the active and passive elements comprising the Cruise, Entry, Descent, and Landing thermal control systems.
Journal Article

Development of the Orbiting Carbon Observatory Instrument Thermal Control System

2008-06-29
2008-01-2065
The Orbiting Carbon Observatory (OCO) will carry a single science instrument scheduled for launch on an Orbital Sciences Corporation LeoStar-2 architecture spacecraft bus in December 2008. The science objective of the OCO instrument is to collect spaced-based measurements of atmospheric CO2 with the precision, resolution, and coverage needed to identify CO2 sources and sinks and quantify their seasonal variability. The instrument will permit the collection of spatially resolved, high resolution spectroscopic observations of CO2 and O2 absorption in reflected sunlight over both continents and oceans. These measurements will improve our ability to forecast CO2 induced climate change. The instrument consists of three bore-sighted, high resolution grating spectrometers sharing a common telescope with similar optics and electronics.
Journal Article

Thermal Control System of the Moon Mineralogy Mapper Instrument

2008-06-29
2008-01-2119
The Moon Mineralogy Mapper (M3) instrument is one in a suite of twelve instruments which will fly onboard the Indian Chandrayaan-1 spacecraft scheduled for launch in 2008. Chandrayaan-1 is India's first mission to the Moon and is being managed by the Indian Space Research Organization (ISRO) in Bangalore, India. Chandrayaan-1 overall scientific objective is the photo-selenological and the chemical mapping of the Moon. The primary science objective of the M3 instrument is the characterization and mapping of the lunar surface composition in the context of its geologic evolution. Its primary exploration goal is to assess and map the Moon mineral resources at high spatial resolution to support future targeted missions. It is a “push-broom” near infrared (IR) imaging spectrometer with spectral coverage of 0.4 to 3.0 μm at 10 nm resolution with high signal to noise ratio, spatial and spectral uniformity.
Technical Paper

Two Phase vs. Single Phase Thermal Loop Trades for Exploration Mission LAT II Architecture

2008-06-29
2008-01-1958
NASA's Exploration Mission program is planning for a return to the Moon in 2020. The Exploration Systems Mission Directorate (ESMD)'s Lunar Architecture Team (LAT) is currently refining their lunar habitat architectures. The Advanced Thermal Control Project at the Johnson Space Center, as part of the Exploration Technology Development Program (ETDP) is developing technologies in support of the future lunar missions. In support of this project, a trade study was conducted at the Jet Propulsion Laboratory on the mechanically pumped two-phase and single-phase thermal loops for lunar habitats located at the South Pole for the LAT II architecture. This paper discusses the various trades and the results for a representative architecture which shares a common external loop for the single and two-phase system cases.
Technical Paper

Results from the Vehicle Cabin Atmosphere Monitor: A Miniature Gas Chromatograph/Mass Spectrometer for Trace Contamination Monitoring on the ISS and Orion

2008-01-29
2008-01-2045
Progress on the delivery of the Vehicle Cabin Atmosphere Monitor (VCAM) is reported. VCAM is an autonomous trace-species detector to be used aboard the International Space Station (ISS) for atmospheric analysis. The instrument is based on a low-mass, low-power miniature preconcentrator, gas chromatograph, and Paul ion trap mass spectrometer (PCGC/MS) capable of measuring volatile constituents in a space vehicle or planetary outpost at sub-ppm levels. VCAM detects and quantifies 40 target compounds at their 180-day Spacecraft Maximum Allowable Concentration (SMAC) levels. It is designed to operate autonomously, maintenance-free, with a self-contained carrier and calibration gas supplies sufficient for a one-year lifetime. Two flight units will be delivered for operation in the ISS EXPRESS rack.
Technical Paper

The CEV Smart Buyer Team Effort: A Summary of the Crew Module & Service Module Thermal Design Architecture

2007-07-09
2007-01-3046
The NASA-wide CEV Smart Buyer Team (SBT) was assembled in January 2006 and was tasked with the development of a NASA in-house design for the CEV Crew Module (CM), Service Module (SM), and Launch Abort System (LAS). This effort drew upon over 250 engineers from all of the 10 NASA Centers. In 6 weeks, this in-house design was developed. The Thermal Systems Team was responsible for the definition of the active and passive design architecture. The SBT effort for Thermal Systems can be best characterized as a design architecting activity. Proof-of-concepts were assessed through system-level trade studies and analyses using simplified modeling. This nimble design approach permitted definition of a point design and assessing its design robustness in a timely fashion. This paper will describe the architecting process and present trade studies and proposed thermal designs
Technical Paper

Development of the Surface Thermal Environment for the Mars Scout Phoenix Mission

2007-07-09
2007-01-3239
Phoenix is NASA's first Mars Scouts Mission that will place a soft-lander on the Martian surface at a high northern latitude. Much of the Mars surface environmental flight data from landed missions pertains to the near-equatorial regions. However, orbital observations have yielded very useful data about the surface environment. These data along with a simple, but highly effective one-dimensional atmospheric model was used to develop the Phoenix surface thermal environment. As candidate landing sites were identified, parametric studies including statistical variations were conducted to prescribe minimum nighttime and maximum daytime temperature design Sols (a Martian day). Atmospheric effects such as clouds and ice were considered. Finally, recent candidate landing site imaging conducted by the Mars Reconnaissance Orbiter revealed that the prime site contained a much higher rock density than first thought.
Technical Paper

Overview of the Vehicle Cabin Atmosphere Monitor, a Miniature Gas Chromatograph/Mass Spectrometer for Trace Contamination Monitoring on the ISS and CEV

2007-07-09
2007-01-3150
Work is underway to deliver an instrument for analysis of the atmosphere aboard the International Space Station. The Vehicle Cabin Atmosphere Monitor (VCAM) is based on a low-mass, low-power miniature preconcentrator gas chromatograph/mass spectrometer (PCGC/MS) capable of providing sub-ppm measurements of volatile constituents in a space vehicle or outpost. VCAM is designed to operate autonomously, maintenance-free, once per day, with its own carrier and calibration gas supplies sufficient for a one-year lifetime. VCAM performance is sufficient to detect and identify 90% of the target compounds specified at their 180-day Spacecraft Maximum Allowable Concentration (SMAC) levels. The flight units will be delivered in mid-2008 and be operated in the ISS EXPRESS rack.
Technical Paper

Viral Populations within the International Space Station's Internal Active Thermal Control System Ground Support and Potential Flight Hardware

2007-07-09
2007-01-3108
The Internal Active Thermal Control System (IATCS) aboard the International Space Station (ISS) contains an aqueous, alkaline fluid (pH 9.5±0.5) that aids in maintaining a habitable environment for the crew. Because microbes have significant potential to cause disease, adverse effects on astronaut health, and microbe-induced corrosion, the presence of both bacteria and viruses within IATCS fluids is of concern. This study sought to detect and identify viral populations in IATCS samples obtained from the Kennedy Space Center as a first step towards characterizing and understanding potential risks associated with them. Samples were concentrated and viral nucleic acids (NA) extracted providing solutions containing 8.87-22.67 μg NA per mL of heat transfer fluid. After further amplification viral DNA and cDNA were then pooled, fluorescently labeled, and hybridized onto a Combimatrix panvira 12K microarray containing probes for ∼1,000 known human viruses.
Technical Paper

Mechanically Pumped Fluid Loop Technologies for Thermal Control of Future Mars Rovers

2006-07-17
2006-01-2035
Future planetary science missions planned for Mars are expected to be more complex and thermally challenging than any of the previous missions. For future rovers, the operational parameters such as landing site latitudes, mission life, distance traversed, and rover thermal energy to be managed will be significantly higher (two to five times) than the previous missions. It is a very challenging problem to provide an effective thermal control for the future rovers using traditional passive thermal control technologies. Recent investigations at the Jet Propulsion Laboratory (JPL) have shown that mechanical pump based fluid loops provide a robust and effective thermal control system needed for these future rovers. Mechanical pump based fluid loop (MPFL) technologies are currently being developed at JPL for use on such rovers. These fluid loops are planned for use during spacecraft cruise from earth to Mars and also on the Martian surface operations.
Technical Paper

Expanding the Capabilities of the JPL Electronic Nose for an International Space Station Technology Demonstration

2006-07-17
2006-01-2179
An array-based sensing system based on polymer-carbon composite conductometric sensors is under development at JPL for use as an environmental monitor in the International Space Station. Sulfur dioxide has been added to the analyte set for this phase of development. Using molecular modeling techniques, the interaction energy between SO2 and polymer functional groups has been calculated, and polymers selected as potential SO2 sensors. Experiment has validated the model and two selected polymers have been shown to be promising materials for SO2 detection.
Technical Paper

Mars Science Laboratory Thermal Control Architecture

2005-07-11
2005-01-2828
The Mars Science Laboratory (MSL1) mission to land a large rover on Mars is being planned for Launch in 2009. As currently conceived, the rover would use a Multi-mission Radioisotope Thermoelectric Generator (MMRTG) to generate about 110 W of electrical power for use in the rover and the science payload. Usage of an MMRTG allows for a large amount of nearly constant electrical power to be generated day and night for all seasons (year around) and latitudes. This offers a large advantage over solar arrays. The MMRTG by its nature dissipates about 2000 W of waste heat. The basic architecture of the thermal system utilizes this waste heat on the surface of Mars to maintain the rover's temperatures within their limits under all conditions. In addition, during cruise, this waste heat needs to be dissipated safely to protect sensitive components in the spacecraft and the rover.
Technical Paper

Mars Exploration Rover Surface Mission Flight Thermal Performance

2005-07-11
2005-01-2827
NASA launched two rovers in June and July of 2003 as a part of the Mars Exploration Rover (MER) project. MER-A (Spirit) landed on Mars in Gusev Crater at 15 degrees South latitude and 175 degrees East longitude on January 4, 2004 (Squyres, et al., Dec. 2004). MER-B (Opportunity) landed on Mars in Terra Meridiani at 2 degrees South latitude and 354 degrees East longitude on January 25, 2004 (Squyres, et al., Aug. 2004). Both rovers have well exceeded their design lifetime (90 Sols) by more than a factor of 5. Spirit and Opportunity are still healthy and continue to execute their roving science missions at the time of this writing. This paper discusses rover flight thermal performance during the surface missions of both vehicles, covering roughly the time from the MER-A landing in late Southern Summer (aereocentric longitude, Ls = 328, Sol 1A) through the Southern Winter solstice (Ls = 90, Sol 255A) to nearly Southern Vernal equinox (Ls = 160, Sol 398A).
Technical Paper

Microbial Burden of Commercial Aircraft Cabin Air

2005-07-11
2005-01-3087
The microbial burdens of 69 cabin air samples collected in-flight aboard commercial airliners were assessed via culture-dependent and molecular-based microbial enumeration assays. Cabin air samples from each of four separate flights aboard two different carriers were collected via air-impingement. Microbial enumeration techniques targeting DNA, ATP, and endotoxin were employed to estimate total microbial burden. The total viable microbial population ranged from 0 to 3.6 × 104 cells per 100 liters of air, as assessed by the ATP-assay. When these same samples were plated on minimal medium, anywhere from 2 to 80% of the viable population was cultivable. Five of the 29 samples examined exhibited higher cultivable plate counts than ATP-derived viable counts, perhaps a consequence of the dormant nature (lower concentration of intracellular ATP) of cells inhabiting these air cabin samples.
Technical Paper

Extended Temperature Range Studies for Dry Heat Microbial Reduction

2005-07-11
2005-01-3096
Dry heat microbial reduction is an approved method to reduce the microbial bioburden on space-flight hardware prior to launch to meet flight project planetary protection requirements. Microbial bioburden reduction also occurs if a spacecraft enters a planetary atmosphere (e.g., Mars) and is heated by frictional forces. However, without further studies, administrative credit for this reduction cannot be applied. The killing of Bacillus subtilis var. niger spores has been examined and lethality data has been collected by placing spores in a vacuum oven or thermal spore exposure vessels (TSEV) in a constant temperature bath. Using this lethality data, a preliminary mathematical model is being developed that can be used to predict spore killing at different temperatures. This paper will present the lethality data that has been collected at this time and the planned future studies.
Technical Paper

Mars Exploration Rover Heat Rejection System Performance – Comparison of Ground and Flight Data

2004-07-19
2004-01-2413
Mars Exploration Rover (MER) mission launched two spacecraft to Mars in June and July of 2003 and landed two rovers on Mars in January 2004. A Heat Rejection System (HRS) based on a mechanically pumped single-phase liquid cooling system was used to reject heat from electronics to space during the seven months cruise from Earth to Mars. Even though most of this HRS design was similar to the system used on Mars Pathfinder in 1996, several key modifications were made in the MER HRS design. These included the heat exchanger used in removing the heat from electronics, design of venting system used to vent the liquid prior to Mars entry, inclusion of pressure transducer in the HRS, and the spacecraft radiator design. Extensive thermal/fluids modeling and analysis were performed on the MER HRS design to verify the performance and reliability of the system. The HRS design and performance was verified during the spacecraft system thermal vacuum tests.
Technical Paper

Margin Determination in the Design and Development of a Thermal Control System

2004-07-19
2004-01-2416
A method for determining margins in conceptual-level design via probabilistic methods is described. The goal of this research is to develop a rigorous foundation for determining design margins in complex multidisciplinary systems. As an example application, the investigated method is applied to conceptual-level design of the Mars Exploration Rover (MER) cruise stage thermal control system. The method begins with identifying a set of tradable system-level parameters. Models that determine each of these tradable parameters are then created. The variables of the design are classified and assigned appropriate probability density functions. To characterize the resulting system, a Monte Carlo simulation is used. Probabilistic methods can then be used to represent uncertainties in the relevant models. Lastly, results of this simulation are combined with the risk tolerance of thermal engineers to guide in the determination of margin levels.
Technical Paper

Design and Flight Qualification of a Paraffin-Actuated Heat Switch for Mars Surface Applications

2002-07-15
2002-01-2275
The Mars Exploration Rover (MER) flight system uses mechanical, paraffin-actuated heat switches as part of its secondary battery thermal control system. This paper describes the design, flight qualification, and performance of the heat switch. Although based on previous designs by Starsys Research Corporation1,2, the MER mission requirements have necessitated new design features and an extensive qualification program. The design utilizes the work created by the expansion of a paraffin wax by bringing into contact two aluminum surfaces, thereby forming a heat conduction path. As the paraffin freezes and contracts, compression springs separate the surfaces to remove the conduction path. The flight qualification program involved extensive thermal performance, structural, and life testing.
X