Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Driving Style Identification Strategy Based on DS Evidence Theory

2023-04-11
2023-01-0587
Driving assistance system is regarded as an effective method to improve driving safety and comfort and is widely used in automobiles. However, due to the different driving styles of different drivers, their acceptance and comfort of driving assistance systems are also different, which greatly affects the driving experience. The key to solving the problem is to let the system understand the driving style and achieve humanization or personalization. This paper focuses on clustering and identification of different driving styles. In this paper, based on the driver's real vehicle experiment, a driving data acquisition platform was built, meanwhile driving conditions were set and drivers were recruited to collect driving information. In order to facilitate the identification of driving style, the correlation analysis of driving features is conducted and the principal component analysis method is used to reduce the dimension of driving features.
Technical Paper

Lane Detection and Pixel-Level Tracking for Autonomous Vehicles

2022-03-29
2022-01-0077
Lane detection and tracking play a key role in autonomous driving, not only in the LKA System but help estimate the pose of the vehicle. While there has been significant development in recent years, traditional outdoor SLAM algorithms still struggle to provide reliable information in challenging dynamic environments such as lack of roadside landscape or surrounding vehicles at almost the same speed or on the road in the woods. On the structured road, lane markings as static semantic features may provide a stable landmark assist in robust localization. As most of the current lane detection work mainly on separated images ignoring the relationship between adjacent frames, we propose a pixel-level lane tracking method for autonomous vehicles. In this paper, we introduce a deep network to detect and track lane features. The network has two parallel branches. One branch detects the lane position, while the other extracts the point description on a pixel level.
Technical Paper

Personalized Adaptive Cruise Control Considering Drivers’ Characteristics

2018-04-03
2018-01-0591
In order to improve drivers’ acceptance to advanced driver assistance systems (ADAS) with better adaptation, drivers’ driving behavior should play key role in the design of control strategy. Adaptive cruise control systems (ACC) have many factors that can be influenced by different driving behavior. It is important to recognize drivers’ driving behavior and take human-like parameters to the adaptive cruise control systems to assist different drivers effectively via their driving characteristics. The paper proposed a method to recognize drivers’ behavior and intention based on Gaussian Mixture Model. By means of a fuzzy PID control method, a personalized ACC control strategy was designed for different kinds of drivers to improve the adaptabilities of the systems. Several typical testing scenarios of longitudinal case were created with a host vehicle and a traffic vehicle.
X