Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

The Effects of Thermal Degradation on the Performance of a NOX Storage/Reduction Catalyst

2009-04-20
2009-01-0631
The performance characteristics of a commercial lean-NOX trap catalyst were evaluated between 200 and 500°C, using H2, CO, and a mixture of both H2 and CO as reductants before and after different high-temperature aging steps, from 600 to 750°C. Tests included NOX reduction efficiency during cycling, NOX storage capacity (NSC), oxygen storage capacity (OSC), and water-gas-shift (WGS) and NO oxidation reaction extents. The WGS reaction extent at 200 and 300°C was negatively affected by thermal degradation, but at 400 and 500°C no significant change was observed. Changes in the extent of NO oxidation did not show a consistent trend as a function of thermal degradation. The total NSC was tested at 200, 350 and 500°C. Little change was observed at 500°C with thermal degradation but a steady decrease was observed at 350°C as the thermal degradation temperature was increased.
Technical Paper

Development of Advanced Metallic Substrate Design for Close Coupled Converter Application

2007-04-16
2007-01-1262
The implementations of the Tier 2 and LEVII emission levels require fast catalyst light-off and fast closed loop control through high-speed engine management. The paper describes the development of innovative catalyst designs. During the development thermal and mechanical boundary conditions were collected and component tests conducted on test rigs to identify the emission and durability performance. The products were evaluated on a Super Imposed Test Setup (SIT) where thermal and mechanical loads are applied to the test piece simultanously and results are compared to accelerated vehicle power train endurance runs. The newly developed light-off catalyst with Perforated Foil Technology (PE) showed superior emission light-off characteristic and robustness.
Technical Paper

Research Results and Progress in LeaNOx II -A Co-operation for Lean NOx Abatement

2000-10-16
2000-01-2909
In a consortium of European industrial partners and research institutes, a combination of industrial development and scientific research was organised. The objective was to improve the catalytic NOx conversion for lean burn cars and heavy-duty trucks, taking into account boundary conditions for the fuel consumption. The project lasted for three years. During this period parallel research was conducted in research areas ranging from basic research based on a theoretical approach to full scale emission system development. NOx storage catalysts became a central part of the project. Catalysts were evaluated with respect to resistance towards sulphur poisoning. It was concluded that very low sulphur fuel is a necessity for efficient use of NOx trap technology. Additionally, attempts were made to develop methods for reactivating poisoned catalysts. Methods for short distance mixing were developed for the addition of reducing agent.
Technical Paper

Reduction of NOx in Lean Exhaust by Selective NOx-Recirculation (SNR-Technique) Part II: NOx Storage Materials

1998-10-19
982593
Selective NOx recirculation (SNR), involving adsorption, selective external recirculation and decomposition of the NOx by the combustion process, is itself a promising technique to abate NOx emissions. Three types of materials containing Ba: barium aluminate, barium tin perovskite and barium Y-zeolites have been developed to adsorb NOx under lean-burn or Diesel conditions, with or without the presence of S02. All these materials adsorb NO2 selectively (lean-burn conditions), and store it as nitrate/nitrite species. The desorption takes place by decomposition of these species at higher temperatures. Nitrate formation implies also sulfate formation in the presence of SO2 and SO3, while the NO2/SO2 competition governs the poisoning of such catalysts.
Technical Paper

Optimisation of Precious Metal Loadings in Automotive Catalysts Using Response Surface Methodology

1996-10-01
961907
The effect of changing catalyst precious metal ratios and loadings on close coupled catalytic converter efficiencies has been studied. The three precious metals were platinum, palladium and rhodium. The specific matrix used for the development of response surface models is a central composite design and provides the capability of visually optimising the precious metal loadings. Catalysts were evaluated using perturbed scans. lightoff curves from the dynamometer aged, and vehicle emission tests. These scans show percent conversion efficiencies of the three legislated gases; HC, CO and NOx, over a range of Air Fuel Ratios (λ). Whilst lean and rich lightoff curves provide indications of conversion efficiencies at varying temperatures. Prior to testing the catalysts were aged, using an accelerated dynamometer ageing process, to 80K simulated kilometres. The catalysts were then fitted to a vehicle and chassis roll emission tests conducted.
Technical Paper

Development of Test Methods for Lean-NOx Catalyst Evaluation

1995-10-01
952489
A test method, based on parallel sample testing with exhaust fuel injection and certain test procedures, has been developed for diesel lean-NOx catalyst evaluation purposes. The results of the verification tests show uniform distribution of both the exhaust gas and the injected fuel, and a high degree of fuel evaporation. Test procedures are discussed from several points of view. The test method offers a precise and efficient way of testing lean-NOx catalysts on heavy duty diesel engines.
X