Refine Your Search

Topic

Author

Search Results

Technical Paper

Estimating Tire Pressure Based on Different Tire Temperature Measurement Points

2024-01-15
2024-01-5002
Knowing the tire pressure during driving is essential since it affects multiple tire properties such as rolling resistance, uneven wear, and how prone the tire is to tire bursts. Tire temperature and cavity pressure are closely tied to each other; a change in tire temperature will cause an alteration in tire cavity pressure. This article gives insights into which tire temperature measurement position is representative enough to estimate pressure changes inside the tire, and whether the pressure changes can be assumed to be nearly isochoric. Climate wind tunnel and road measurements were conducted where tire pressure and temperature at the tire inner liner, the tire shoulder, and the tread surface were monitored. The measurements show that tires do not have a uniform temperature distribution. The ideal gas law is used to estimate the tire pressure from the measured temperatures.
Technical Paper

Reactivity of Diesel Soot from 6- and 8-Cylinder Heavy-Duty Engines

2023-08-28
2023-24-0119
Increasing concern for air pollution together with the introduction of new types of fuels pose new challenges to the exhaust aftertreatment system for heavy-duty (HD) vehicles. For diesel-powered engines, emissions of particulate matter (PM) is one of the main drawbacks due to its effect on health. To mitigate the tailpipe emissions of PM, heavy-duty vehicles are since Euro V equipped with a diesel particulate filter (DPF). The accumulation of particles causes flow restriction resulting in fuel penalties and decreased vehicle performance. Understanding the properties of PM produced during engine operation is important for the development and optimized control of the DPF. This study has focused on assessing the reactivity of the PM by measuring the oxidation kinetics of the carbonaceous fraction. PM was sampled from two different heavy-duty engines during various test cycles.
Technical Paper

Development of a Laboratory Unit to Study Internal Injector Deposits Formation

2023-08-28
2023-24-0078
The formation of deposits in the fuel systems of heavy-duty engines, using drop-in fuels, has been reported in recent years. Drop-in fuels are of interest because they allow higher levels of alternative fuels to be blended with conventional fuels that are compatible with today’s engines. The precipitation of insolubles in the drop-in fuel can lead to clogging of fuel filters and internal injector deposits, resulting in increased fuel consumption and engine drivability problems. The possible mechanisms for the formation of the deposits in the fuel system are not yet fully understood. Several explanations such as operating conditions, fuel quality and contamination have been reported. To investigate injector deposit formation, several screening laboratory test methods have been developed to avoid the use of more costly and complex engine testing.
Technical Paper

Evaluation of Cylinder State Estimator using Fuel Evaporation Assessment in a PFI Methanol HD SI Engine

2022-08-30
2022-01-1065
Modern spark-ignited (SI) engines offer excellent emission reduction when operated with a stoichiometric mixture and a three-way catalytic converter. A challenge with stoichiometric compared to diluted operation is the knock propensity due to the high reactivity of the mixture. This limits the compression ratio, thus reducing engine efficiency and increasing exhaust temperature. The current work evaluated a model of conditions at inlet valve closing (IVC) and top dead center (TDC) for steady state operation. The IVC temperature model is achieved by a cycle-to-cycle resolved residual gas fraction estimator. Due to the potential charge cooling effect from methanol, a method was proposed to determine the fraction of fuel sourced from a wall film. Determining the level of charge cooling is important as it heavily impacts the IVC and TDC temperatures.
Technical Paper

Cycle-To-Cycle Effects and Knock Prediction using Spark Induced Disturbances on a PFI Methanol HD SI Engine

2022-08-30
2022-01-1067
Stoichiometric operation of a Port Fueled Injection (PFI) Spark-Ignited (SI) engine with a three-way catalytic converter offers excellent CO2 reduction when run on renewable fuel. The main drawbacks with stoichiometric operation are the increased knock propensity, high exhaust temperature and reduced efficiency. Knock is typically mitigated with a reactive knock controller, with retarded ignition timing whenever knock is detected and the timing then slowly advanced until knock is detected again. This will cause some cycles to operate with non-ideal ignition timing. The current work evaluates the possibility to predict knock using the measured and modelled temperatures at Inlet Valve Closing (IVC) and Top Dead Center (TDC). Feedback effects are studied beyond steady state operation by using induced ignition timing disturbances.
Technical Paper

Simulation Study of a Turbocharged Two-Stroke Single Cylinder 425cc SI Engine

2021-09-05
2021-24-0003
An afterburner-assisted turbocharged single-cylinder 425 cc two-stroke SI-engine is described in this simulation study. This engine is intended as a Backup Range Extender (REX) application for heavy-duty battery electric vehicles (BEV) when external electric charging is unavailable. The 425 cc engine is an upscaled version of a 125 cc port-injected engine [26] which demonstrated that the selected technology could provide a specific power level of 400 kW/L and the desired 150 kW in a heavy duty BEV application. The 425 cc single cylinder two-stroke engine is an existing engine as one half of a 850 cc snowmobile engine. This simulation study includes upscaling of the swept volume, impact on engine speed and gas exchange properties. In the same way as for the 125cc engine [26], the exhaust gases reaches the turbine through a tuned exhaust pipe and an afterburner or oxidation catalyst.
Technical Paper

Comparison of Two Dilution and Conditioning Systems for Particle Number Measurements along the Exhaust After-Treatment System of an HD Diesel Engine

2021-04-06
2021-01-0619
In heavy-duty engines, Euro VI legislation regulates the total particle number (PN) in the exhaust based on the particle measurement program (PMP) guidelines. By PMP directives, the exhaust sample is diluted and conditioned to contain non-volatile particles before measuring the PN. The fraction of non-volatile and volatile particles changes along the exhaust after-treatment system and could affect the total PN measured. Therefore, it is of interest to compare the performance of the dilution systems at different positions along the after-treatment system. For this purpose, a standard PMP compliant two-stage dilution system (DS1) with evaporation tube (ET) was compared with a close coupled two-stage ejector dilution system (DS2). In DS2, the non-volatile PN was measured with a dilution temperature of 350°C (same as the DS1 ET temperature) while the volatile PN was measured with a dilution temperature of 150°C.
Journal Article

On the Effects of Turbocharger on Particle Number and Size Distribution in a Heavy - Duty Diesel Engine

2020-09-27
2020-24-0007
Particles emitted from internal combustion engines have adverse health effects and the severity varies based on the particle size. A diesel particulate filter (DPF) in the after-treatment systems is employed to control the particle emissions from combustion engines. The design of a DPF depends on the nature of particle size distribution at the upstream and is important to evaluate. In heavy-duty diesel engines, the turbocharger turbine is an important component affecting the flow and particles. The turbine wheel and housing influence particle number and size. This could potentially be used to reduce particle number or change the distribution to become more favourable for filtration. This work evaluates the effect of a heavy-duty diesel engine’s turbine on particle number and size distribution.
Technical Paper

Combustion Characteristics, Performance and NOx Emissions of a Heavy-Duty Ethanol-Diesel Direct Injection Engine

2020-09-15
2020-01-2077
Diffusive combustion of direct injected ethanol is investigated in a heavy-duty single cylinder engine for a broad range of operating conditions. Ethanol has a high potential as fossil fuel alternative, as it provides a better carbon footprint and has more sustainable production pathways. The introduction of ethanol as fuel for heavy-duty compression-ignition engines can contribute to decarbonize the transport sector within a short time frame. Given the resistance to autoignition of ethanol, the engine is equipped with two injectors mounted in the same combustion chamber, allowing the simultaneous and independent actuation of the main injection of pure ethanol and a pilot injection of diesel as an ignition source. The influence of the dual-fuel injection strategy on ethanol ignition, combustion characteristics, engine performance and NOx emissions is evaluated by varying the start of injection of both fuels and the ethanol-diesel ratio.
Technical Paper

Theoretical Assessment of Rigs for Accelerated Ash Accumulation in Diesel Particulate Filters

2020-09-15
2020-01-2175
Renewable fuels from different feedstocks can enable sustainable transport solutions with significant reduction in greenhouse gas emissions compared to conventional petroleum-derived fuels. Nevertheless, the use of biofuels in diesel engines will still require similar exhaust gas cleaning systems as for conventional diesel. Hence, the use of diesel particulate filters (DPF) will persist as a much needed part of the vehicle’s aftertreatment system. Combustion of renewable fuels can potentially yield soot and ash with different properties as well as larger amounts of ash compared to conventional fossil fuels. The faster ash build-up and altered ash deposition pattern lead to an increase in pressure drop over the DPF, increase the fuel consumption and call for premature DPF maintenance or replacement. Prolonging the maintenance interval of the DPF for heavy-duty trucks, having a demand for high up-time, is highly desirable.
Technical Paper

A Measurement of Fuel Filters’ Ability to Remove Soft Particles, with a Custom-Built Fuel Filter Rig

2020-09-15
2020-01-2130
Biofuel can enable a sustainable transport solution and lower greenhouse gas emissions compared to standard fuels. This study focuses on biodiesel, implemented in the easiest way as drop in fuel. When mixing biodiesel into diesel one can run into problems with solubility causing contaminants precipitating out as insolubilities. These insolubilities, also called soft particles, can cause problems such as internal injector deposits and nozzle fouling. One way to overcome the problem of soft particles is by filtration. It is thus of great interest to be able to quantify fuel filters’ ability to intercept soft particles. The aim of this study is to test different fuel filters for heavy-duty engines and their ability to filter out synthetic soft particles. A custom-built fuel filter rig is presented, together with some of its general design requirements. For evaluation of the efficiency of the filters, fuel samples were taken before and after the filters.
Journal Article

A Batch Blending System for Continuous Production of Multi-Component Fuel Blends for Engine Laboratory Tests

2020-09-15
2020-01-2153
The increased rates of research on complex fuel blends in engine applications poses a need for more efficient and accurate fuel blending processes in engine laboratories. Making the fuel blending process automatic, effective, accurate and flexible saves time, storage space and cost without compromising the tests of future fuel alternatives. To meet these requirements, an automatic fuel blending system, following a sequential batch process, was designed and tested for engine laboratory application. The fuel blending system was evaluated in terms of functionality, safety, accuracy and repeatability. The functionality and safety was evaluated through a risk analysis. Whereas, the accuracy and repeatability of the system was investigated through blend preparation tests. The results show that the minimum fuel mass limitation of the system is 0.5 kg. This allows for blends with fuel ratios as low as 7 vol-% to be prepared by the system.
Technical Paper

On the Effects of Urea and Water Injection on Particles across the SCR Catalyst in a Heavy - Duty Euro VI Diesel Engine

2020-09-15
2020-01-2196
Particle emissions from heavy-duty engines are regulated both by mass and number by Euro VI regulation. Understanding the evolution of particle size and number from the exhaust valve to the tail pipe is of vital importance to expand the possibilities of particle reduction. In this study, experiments were carried out on a heavy-duty Euro VI engine after-treatment system consisting of diesel oxidation catalyst, diesel particulate filter and selective catalytic reduction (SCR) unit with AdBlue injection followed by ammonia slip catalyst. The present work focusses on the SCR unit with regard to total particle number with and without nucleation particles both. Experiments were conducted by varying the AdBlue injection quantity, SCR inlet temperature [to vary the reaction temperature], exhaust mass flow rate [to vary the residence time in SCR], and fuel injection pressures [to vary inlet particle number and inlet NOx].
Technical Paper

Comparison of heat losses at the impingement point and in between two impingement points in a diesel engine using phosphor thermometry

2019-12-19
2019-01-2185
In-cylinder heat losses in diesel engines reduce engine efficiency significantly and account for a considerable amount of injected fuel energy. A great part of the heat losses during diesel combustion presumably arises from the impingement of the flame. The present study compares the heat losses at the point where the flame impinges onto the piston bowl wall and the heat losses between two impingement points. Measurements were performed in a full metal heavy-duty diesel engine with a small optical access through a removed exhaust valve. The surface temperature at the impingement point of the combusting diesel spray and at a point in between two impingement points was determined using phosphor thermometry. The dynamic heat fluxes and the heat transfer coefficients which result from the surface temperature measurements are estimated. Simultaneous cylinder pressure measurements and high-speed videos are associated to individual surface temperature measurements.
Technical Paper

Impact of Dynamic Exhaust Valve Modelling

2019-12-19
2019-01-2346
A method developed in SAE 2019-01-0058 to correct for deviations from quasi-steady exhaust valve flow is implemented on a single-cylinder GT-Power model and the effects on pumping work and blowdown pulse characteristics are investigated. The valve flow area is always reduced compared to the reference quasi-steady case. It decreases with higher pressure ratios over the valve and increases with higher engines speeds. The reduced flow area increases pumping work with load and engine speed, though primarily with engine speed. The magnitude of the blowdown pulse is reduced and the peak is shifted to a later crank angle.
Technical Paper

A Test Rig for Evaluating Thermal Cyclic Life and Effectiveness of Thermal Barrier Coatings inside Exhaust Manifolds

2019-04-02
2019-01-0929
Thermal Barrier Coatings (TBCs) may be used on the inner surfaces of exhaust manifolds in heavy-duty diesel engines to improve the fuel efficiency and prolong the life of the component. The coatings need to have a long thermal cyclic life and also be able to reduce the temperature in the substrate material. A lower temperature of the substrate material reduces the oxidation rate and has a positive influence on the thermo-mechanical fatigue life. A test rig for evaluating these properties for several different coatings simultaneously in the correct environment was developed and tested for two different TBCs and one oxidation-resistant coating. Exhausts were redirected from a diesel engine and led through a series of coated pipes. These pipes were thermally cycled by alternating the temperature of the exhausts. Initial damage in the form of cracks within the top coats of the TBCs was found after cycling 150 times between 50°C and 530°C.
Technical Paper

Study on Heat Losses during Flame Impingement in a Diesel Engine Using Phosphor Thermometry Surface Temperature Measurements

2019-04-02
2019-01-0556
In-cylinder heat losses in diesel engines decrease engine efficiency significantly and account for approximately 14-19% [1, 2, 3] of the injected fuel energy. A great part of the heat losses during diesel combustion presumably arises from the flame impingement onto the piston. Therefore, the present study investigates the heat losses during flame impingement onto the piston bowl wall experimentally. The measurements were performed on a full metal heavy-duty diesel engine with a small optical access through a removed exhaust valve. The surface temperature at the impingement point of the flame was determined by evaluating a phosphor’s temperature dependent emission decay. Simultaneous cylinder pressure measurements and high-speed videos are associated to the surface temperature measurements in each cycle. Thus, surface temperature readings could be linked to specific impingement and combustion events.
Technical Paper

Dynamic Exhaust Valve Flow 1-D Modelling During Blowdown Conditions

2019-01-15
2019-01-0058
To conduct system level studies on internal combustion engines reduced order models are required in order to keep the computational load below reasonable limits. By its nature a reduced order model is a simplification of reality and may introduce modeling errors. However what is of interest is the size of the error and if it is possible to reduce the error by some method. A popular system level study is gas exchange and in this paper the focus is on the exhaust valve. Generally the valve is modeled as an ideal nozzle where the flow losses are captured by reducing the flow area. As the valve moves slowly compared to the flow the process is assumed to be quasi-steady, i.e. interpolation between steady-flow measurements can be used to describe the dynamic process during valve opening. These measurements are generally done at low pressure drops, as the influence of pressure ratio is assumed to be negligible.
Technical Paper

Agglomeration and Nucleation of Non-Volatile Particles in a Particle Grouping Exhaust Pipe of a Euro VI Heavy-Duty Diesel Engine

2019-01-15
2019-01-0044
The possibility of non-volatile particle agglomeration in engine exhaust was experimentally examined in a Euro VI heavy duty engine using a variable cross section agglomeration pipe, insulated and double walled for minimal thermophoresis. The agglomeration pipe was located between the turbocharger and the exhaust treatment devices. Sampling was made across the pipe and along the centre-line of the agglomeration pipe. The performance of the agglomeration pipe was compared with an equivalent insulated straight pipe. The non-volatile total particle number and size distribution were investigated. Particle number measurements were conducted according to the guidelines from the Particle Measurement Programme. The Engine was fuelled with commercially available low sulphur S10 diesel.
Technical Paper

Future Fuels for DISI Engines: A Review on Oxygenated, Liquid Biofuels

2019-01-15
2019-01-0036
Global warming and climate change have led to a greater interest in the implementation of biofuels in internal combustion engines. In spark ignited engines, biofuels have been shown to improve efficiency and knock resistance while decreasing emissions of unburned hydrocarbons, carbon monoxide and particles. This study investigates the effect of biofuels on SI engine combustion through a graphical compilation of previously reported results. Experimental data from 88 articles were used to evaluate the trends of the addition of different biofuels in gasoline. Graphs illustrating engine performance, combustion phasing and emissions are presented in conjunction with data on the physiochemical properties of each biofuel component to understand the observed trends. Internal combustion engines have the ability to handle a wide variety of fuels resulting in a broad range of biofuel candidates.
X