Refine Your Search

Topic

Author

Search Results

Technical Paper

Development of Supercharged Two-Stroke Engine with Intake and Exhaust Valve for Hybrid System

2023-10-24
2023-01-1823
The two-stroke engine has a small displacement and high output, and therefore saves space when the engine is installed in a vehicle. Thus, the application of two-stroke engines to HEVs is a very effective means of reducing vehicle weight and securing engine space. On the other hand, the unfired element increases in the exhaust gas with a two-stroke engine because the air-fuel mixture is blown through to the exhaust system during the scavenging process inside the cylinder. Moreover, combustion becomes unstable due to the large amount of residual burnt gas in the cylinder. To solve these problems, we propose a two-stroke engine that has intake and exhaust valves that injects fuel directly into the cylinder. We describe the engine shape and the method that can provide high scavenging efficiency and stable combustion in such a two-stroke engine.
Technical Paper

Development of Direct Injection Technology for Motorcycle Gasoline Engine

2023-10-24
2023-01-1850
The authors developed a gasoline engine that combined direct injection and port fuel injection in order to improve fuel economy for motorcycles. Compared to passenger car engines, motorcycle engines generally have smaller displacement and operate at higher engine speed, so the bore and stroke are generally smaller than those of passenger cars. Therefore, the direct injection spray characteristics optimized for small bore and stroke were selected to reduce fuel adhesion to various parts of the combustion chamber wall. In addition, this engine employed the high tumble intake port that can both strengthen turbulence intensity and suppress the decrease in volumetric efficiency to a lower level. Also, stratification of air-fuel mixture and split injection were employed for reducing catalyst warm-up time and soot. The results showed that excellent fuel economy was achieved without sacrificing engine output performance while meeting emissions regulations.
Technical Paper

A Study of Autoignition and Combustion Characteristics in an HCCI Engine using a Blended Fuel of DME and City Gas

2023-09-29
2023-32-0017
In recent years, there has been a need to reduce CO2 emissions from internal combustion engines in order to achieve an energy-saving and low-carbon society. Against this backdrop, the authors have focused attention on Homogeneous Charge Compression Ignition (HCCI) combustion that achieves both high efficiency and clean emissions. With HCCI combustion, a premixed mixture of fuel and air is supplied to the cylinder and autoignited by piston compression to drive the engine. Autoignition makes it possible to operate the engine at a high compression ratio, enabling the HCCI combustion system to attain high efficiency. However, HCCI combustion also has some major unresolved issues. Two principal issues that can be cited are ignition timing control for igniting the mixture at the proper time and assurance of suitable combustion conditions following ignition to prevent incomplete combustion and knocking.
Technical Paper

Effects of Engine Cooling System on Engine Performance: Balancing Engine Power and Fuel Consumption

2022-01-09
2022-32-0017
During high engine load, adequate engine cooling is necessary to prevent irregularly highly machine temperatures and spark knock that are issues affecting high power from being achieved. However, excessive cooling during low engine load or cooling locations that do not require cooling relatively exacerbates fuel consumption. Therefore, optimization of the engine cooling system is needed to achieve higher performance of motorcycle engines. First of all, in water-cooled engines, conventional water cooling system adjusts the cooling amount via flow channel switching with a thermostat, which is opened in high water temperature. However, with the bypass channel, water may bypass the radiator but still continues to circulate, thereby leading to loss arising from heat transfer from the cylinders.
Technical Paper

Application of Participation Factor Focusing on Response at Specific Part for Vibration Evaluation of Motorcycle Frame

2022-01-09
2022-32-0037
In this study, we efficiently predict the vibration response of a design shape at a low computational cost in the early development stage, select design proposals with good characteristics from many proposals devised by the designer at the early stage, and forward them to the next stage to achieve the front-loading of development while increasing product value. The application of participation factor (PF) focusing on the response at a specific part for vibration evaluation of a motorcycle frame is described. To reduce the motorcycle frame vibration, an eigenvalue analysis was performed, and appropriate design change proposals were efficiently selected using partial participation factor (PPF), an index showing the relevance of vibration of specific parts or positions. Using the PPF, we extracted which vibration modes considerably contribute to the vibration response of the part of interest.
Technical Paper

Dynamic Stability Analysis of High-Speed Traction Drive CVT for Aircraft Power Generation

2018-10-30
2018-01-1936
The traction-drive integrated drive generator (T-IDG®) has been developed since 1999 to replace current hydrostatic transmission drive generators mounted on Japanese military aircraft. The T-IDG® consists of a generator and a half-toroidal traction-drive continuously variable transmission (CVT), which maintains a constant output speed of 24000 rpm, that is, a 400 Hz AC power supply. To cope with recent trends of more electric aircraft (MEA) and the need for weight reduction, a high-speed traction-drive CVT is advantageous over other transmissions. The torque on the half-toroidal variator is transmitted through multiple power rollers. The equal load sharing among power rollers is typically controlled by a mechanical hydraulic feedback system, whose stability is one of the main issues for the high-speed traction-drive CVT. Previous studies have shown that insufficient damping and stiffness of the mechanical hydraulic feedback system cause self-induced vibration.
Technical Paper

Effects of Port Injection Specifications on Air-Fuel Ratio and Emission Behavior under Transient Operation

2018-10-30
2018-32-0012
When an electronically controlled fuel injection device is located at downstream in intake port (hereinafter defined as downstream injection, on the other hand, upstream injection is defined as that fuel injection device is located at upstream in intake port), the possibilities of an improvement in the engine startability, increase in maximum power, and decrease in THC during warming have been reported in visualizations of the intake port. In addition, the amount of wall adhesion decreased with downstream injection in previous paper [1]. In this paper, we examine the influence on the amount of wall adhesion due to the difference in injection position on fuel transport in the intake port during transient operation and the obtained exhaust A/F and the amount of exhaust gas emitted during transient operation are evaluated.
Technical Paper

Effects of Port Injection Specifications on Emission Behavior of THC and Engine Maximum Power

2017-11-05
2017-32-0059
In this paper, it is also elucidated that the influence of the downstream injection, which caused different fuel behavior in contrast with upstream injection, on the THC after warm-up and at the maximum power, as well as its mechanism. The mechanism is clarified by use of the intake port visualization system. First, at each injection position, the effect of injection timing on THC emission after warm-up was evaluated. In the downstream injection, THC emission increases during the injection timing, in which the fuel spray directly flows in-cylinder during the intake process (hereinafter defined as the intake valve opening injection timing), and the amount of THC emission is reduced at the other injection timing (hereinafter defined as the intake valve closing injection timing). Based on the results of visualizing the intake port, injected fuel phase near the intake valve is spray in the downstream injection.
Technical Paper

Optimization of Intake Port for Improvement of Fuel Consumption and Torque

2017-11-05
2017-32-0055
In this study on the motorcycle engine, we investigated the geometry of the newly developed intake port with an objective of improving the fuel consumption and the torque in practical range. Herein we present the results obtained. We believe that an effective measure for achieving the stated objective is to improve the combustion speed and combustion stability. To realize that, it is necessary to increase the turbulence during combustion and improve the homogeneity of air-fuel mixture. To investigate the feasible shape of the port, the CFD simulation (including fuel spray analysis) was performed and a geometry that improved the turbulent kinetic energy and mixture homogeneity at the time of ignition was selected. For confirming the combustion improvement effect achieved by tumble strengthening, an engine test was conducted with the same amount of intake air as that used in.
Journal Article

Effects of Port Injection Specifications on Emission Behavior of THC

2016-11-08
2016-32-0065
In port injection, it is difficult to control in-cylinder fuel supply of each cycle in a transient state as cold start (in this paper, cold start is defined as several cycles from cranking at low engine temperature). Hence, THC, which is one of regulated emission gases, is likely to increase at cold start. As one of THC emission reduction approaches at cold start, the optimization of fuel injection specifications (including injection position and spray diameter) is expected to reduce THC emission. Setting injection position as downstream position is expected to secure the in-cylinder fuel supply amount at cold start because of small fuel adhesion amount on an intake port wall and a short distance between the injection position and in-cylinder. The position injection contributes to reduction of THC emission due to elimination of misfire.
Journal Article

Acceleration Performance Analysis for Rubber V-Belt CVT with Belt Tension Clutching

2015-11-17
2015-32-0731
The power train system for Utility Vehicles (UVs) or All-Terrain Vehicles (ATVs) mainly consists of a rubber V-belt CVT. The adjustment of the CVT specification requires many steps to realize the shifting operations of the CVT so as to satisfy the acceleration feeling of the driver. In this paper, we report on the simulation technology that predicts the transient behavior during an acceleration of the vehicle equipped with a belt tension clutching CVT, which has both functions of the shift operation and the clutch action. By using the developed simulation technique, it has become possible to adjust the CVT specifications efficiently.
Technical Paper

Engine Mount System Achieving Reduced Vibration from an Inline 3 Cylinder Engine Installed in a Utility Vehicle

2015-11-17
2015-32-0727
This paper describes an engine mount system that achieves reduced vibration on an industrial type utility vehicle. First the vibration level and direction of the inline three cylinder engine installed in the vehicle was analyzed and based on these results a mount layout that leads to a reduced level of vibration felt by the passengers was developed. Next, this was applied on an actual vehicle and spring characteristics were designed for each mount. The actual spring constants were set such that when considering the engine to be a rigid body, the resonance frequency thereof occurs at an engine speed lower than idle and in addition were set to ensure component strength relative to driving forces and inertial forces that act while the utility vehicle is being driven. Lastly, achievement of significant vibration reduction was confirmed on an actual vehicle showing that this engine mount system is effective at reducing vibration.
Technical Paper

Development of a Supercharged Engine for Motorcycle with a Centrifugal Supercharger

2015-11-17
2015-32-0729
1 In the development of motorcycle engines, a strong feeling of power, an element of being fun to ride has continued strong demand. However, demand to meet environmental performance, a conflicting element, has increased dramatically in recent years and a breakthrough technology that achieves both environmental performance and a feeling of power is in demand. Here, the newly developed engine has greatly enhanced feeling of power while clearing stringent environmental restrictions through use of a centrifugal type supercharger. However, there were several problems that had to be resolved with regards to application of a supercharger to a motorcycle engine. In applying a supercharger to a motorcycle, a major problem is the best way to keep the engine size from increasing in size. The engine, which is the heaviest parts on a motorcycle greatly affects motorcycle maneuverability so it must be compact and the mass concentrated.
Technical Paper

Development of Fatigue Durability Evaluation Technology for Motorcycle Frame

2015-11-17
2015-32-0811
In the development of a motorcycle frame, the balance between high performance and reliability and a short development period are important. In this study, a fatigue durability evaluation technique for a motorcycle frame was developed to enable highly accurate development within a short period of time. Furthermore, we developed a shaking table excitation system as a means to supplement the road test.
Technical Paper

Application of OSC Estimation Technology of the Catalyst to the Air-Fuel Ratio Control of the Motorcycle

2015-11-17
2015-32-0752
The regulation for emission gas of the motorcycle is rapidly being strengthened as the concern about global environment grows around the world, and manufacturers are facing the problem to reduce the toxic materials in the emission gas more. As the technology to reduce the toxic materials, it is common to install a three way catalyst (TWC) on an exhaust system and optimize the oxygen concentration at the inlet of TWC by maintaining air fuel ratio (A/F) on stoichiometric A/F with the control of fuel injection quantity. Furthermore, TWC itself is designed to maintain proper oxygen concentration by the addition of a substance with oxygen storage capacity (OSC), which is able to suppress the variation of the oxygen concentration.
Technical Paper

A Study of Function Control in the Electric Motorcycle

2015-11-17
2015-32-0753
Generally, it is thought that control is simpler than an Internal Combustion Engine (ICE)-Motorcycle(MC) as for the Electric Vehicle(EV) type MC. However, there is few characteristic to the ICE-MC to the EV-MC and it cannot get good performance without control for EV-MC. We study the methodology for design and evaluation an EV-MC. In this approach, we developed the prototype EV-MC having manual transmission. In our study, we think that EV-MC having manual transmission is feature in comparison with other general EV-MC. From this feature, we had to develop the function control in addition to standard EV-MC function control. This paper provides a function control for EV-MC having manual transmission. In this paper, we arrange the problem points of EV-MC which put electric propulsion motor and manual transmission together at first. And report the result that studied a method to solve the problem points.
Technical Paper

The Feasibility Study of a Design Concept of Electric Motorcycle

2015-09-01
2015-01-1775
As for automobile, the mass production period of Electric Vehicle(EV) has begun by the rapid progress of the battery performance. But for EV-Motorcycle(MC), it is limited for the venture companies' releases. The design and evaluation methodologies are not yet established or standardized so far. This paper provides the practical and the experimental examples. To study the feasibility of EV-MC, we developed the prototypes in the present technical and suppliers' parts environments, and evaluated them by the practical view of the MC usage. The developed EV-MC has the equivalent driving performance of the 250cc internal combustion engine(ICE)-MC and a cruising range of 100km in normal use.
Technical Paper

A Study of Electric Motorcycle

2014-11-11
2014-32-0012
As for automobile, the mass production period of Electric Vehicle(EV) has begun by the rapid progress of the battery performance. But for EV- Motorcycle(MC), it is limited for the venture companies' releases. The design and evaluation methodologies are not yet established or standardized so far. This paper provides the practical and the experimental examples. To study the feasibility of EV-MC, we developed the prototypes in the present technical and suppliers' parts environments, and evaluated them by the practical view of the MC usage. The developed EV-MC has the equivalent driving performance of the 250cc internal combustion engine(ICE)-MC and a cruising range of 100km in normal use. In the prototype development, the reliability and the ability of protection design of the battery in the whole vehicle against the environmental loads are mainly studied, especially, heat and cold, water, shock, and the accident impact.
Technical Paper

Development of Alternative Fuel Content Estimation Method and Apparatus

2013-10-15
2013-32-9156
Environmental and energy independence concerns have stimulated the development of an apparatus for alternative fuel. It estimates the ethanol content in the fuel in order to perform a reliable combustion. One means for measuring the ratio of ethanol present in the fuel tank is to provide a fuel composition sensor. However, such a fuel composition sensor increases the number of parts and causes the cost issues in motorcycles. We used an oxygen sensor disposed to the exhaust pipe to estimate the ethanol content without increasing the parts and costs. The common method of the estimation is the oxygen feed-back in stoichiometric air fuel ratio condition. Unfortunately, two-wheel vehicles are often operated in rich conditions and have less chance of stoichiometric condition. In this study, we used a one-liter four-cylinder motorcycle, and have developed a practical method to estimate the ethanol content even in the not-stoichiometric condition.
Technical Paper

Development of Intake Sound Control Technique for Sports-Type Motorcycles

2013-10-15
2013-32-9164
Engine sound is one of the most important factors when selecting a motorcycle from various models. Therefore, it is necessary to create an appealing sound in the rider's ears in addition to complying with noise regulations. In this paper, how we control intake sound is described through the study of a sports-type motorcycle with an inline 4 cylinder engine. To control intake sound, both intake pressure pulsations generated by the engine and acoustic transfer characteristics of the intake system are important. It is shown by unsteady-state one-dimensional computational fluid dynamics analysis that specifications of the exhaust system affect intake pressure pulsations across the valve overlap period. Therefore, to emphasize high order components of the engine revolutions in the intake sound, for example, modifying the layout of the exhaust muffler is effective.
X