Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

A Study of the Control Logic of Electronically Controlled Suspension for Motorcycle

2020-01-24
2019-32-0569
Electronically controlled suspensions are expected to improve driving performance as the damping characteristics of the suspension can be adjusted in real time to respond to road conditions. This paper reports the results of testing the suspension control logic for improving ride quality, especially when driving on rough roads, using an internally developed riding simulator. The skyhook theory is widely known as a control logic for reducing vibration when driving a four-wheeled vehicle on a rough road, which we utilized in our riding simulator to examine the vibration reduction effects when applying control logic for motorcycle suspensions. The test results show that the skyhook theory can be applied in motorcycles. However, sensors for suspension systems that can be installed in mass-produced motorcycles are severely limited in terms of cost and space.
Technical Paper

Development of a Riding Simulator for Motorcycles

2018-10-30
2018-32-0031
We developed the motorcycles based on RIDEOLOGY (Ride + Ideology) concept. In the past, the “Ride” was studied by a sensory evaluation with actual driving. However, the recent progress in numerical analysis, there have been developed driving simulators. It allows more quantitative measurement in a sensory evaluation. Therefore, we also developed a riding simulator specialized for motorcycles. In order to develop such riding simulator, there are some technical challenges for motorcycles. First, we need to reproduce roll motion height of motorcycles. Compared to four-wheeled vehicles, motorcycles have a higher center of rotation. Second, we need to reproduce vehicle motion control by rider’s changing body position. A rider controls vehicle’s lean by shifting his center of gravity. Therefore, it is necessary to construct a measurement system of rider’s body position. Third, we need to improve senses of speed and reality.
X