Refine Your Search

Topic

Author

Search Results

Technical Paper

Numerical Modeling of Spark Path with Stretching and Short Circuit in Three-Dimensional Flow

2021-09-21
2021-01-1164
Prediction of the discharge path behavior between electrodes on a spark plug is important for efficient energy use in internal combustion engines, especially in lean combustion. In this paper, we propose a numerical model for the prediction of the spark path behaviors based on the coupling of a flow field, a Lagrangian particle model, and an equivalent circuit model. A turbulent flow around cylinders imitating electrodes is solved using a direct numerical simulation, in which Lagrangian particles along the spark path are tracked. Electric current and inter-electrode voltage are computed based on the energy conversion rate from the circuit to the mixture gas. As a result, a discharge path is reproduced with Lagrangian tracking particles virtually aligned between the cylinders. The spark path has a complicated structure along the spanwise direction due to the complex three-dimensional vortical structure of the cylinder wake.
Technical Paper

Research of Fuel Components to Expand lean-limit in Super lean-burn condition

2019-12-19
2019-01-2257
The thermal efficiency of internal combustion engines can be improved dramatically with the right combination of engine technology and fuel technology. Super lean-burn technology is attracting attention as a means of boosting thermal efficiency. However, there is a limit to how lean a fuel-air mixture can be before combustion becomes unstable or misfire occurs. The authors evaluated the effects of various chemical compositions on the lean limit under super lean-burn conditions. By changing the composition of the fuel, it was possible to achieve excess air ratios of over 2.0, resulting in high thermal efficiency.
Technical Paper

A Cycle-to-Cycle Variation Extraction Method for Flow Field Analysis in SI IC Engines Based on Turbulence Scales

2019-01-15
2019-01-0042
To adhere to stringent environmental regulations, SI (spark ignition) engines are required to achieve higher thermal efficiency. In recent years, EGR (exhaust gas recirculation) systems and lean-burn operation has been recognized as key technologies. Under such operating conditions, reducing CCV (cycle-to-cycle variation) in combustion is critical to the enhancement of overall engine performance. Flow-field CCV is one of the considerable factors affecting combustion in engines. Conventionally, in research on flow fields in SI engines, the ensemble average is used to separate the measured velocity field into a mean component and a fluctuation component, the latter of which contains a CCV component and a turbulent component. To extract the CCV of the flow field, previous studies employed spatial filter, temporal filter, and POD (proper orthogonal decomposition) methods.
Technical Paper

Effects of Spark Discharge Characteristic on Cycle-to-Cycle Variations of Combustion for Lean SI Operation with High Tumble Flow

2017-11-05
2017-32-0111
It has been shown that lean burn is effective for improving the thermal efficiency of gasoline SI engines. This happens because the reduction of heat loss by decrease of flame temperature. On the other hand, the fuel dilution of the premixed gas makes the combustion speed low, and cycle-to-cycle variations of combustion are increased by excessive dilution, it is difficult to increase the thermal efficiency of the gasoline SI engine. Influence of ignition by spark discharge is considered as a factor of combustion variation, and it is necessary to understand the effects of spark discharge characteristics on the lean combustion process. Spark discharge in the SI engines supplies energy to the premixed-gas via a discharge channel in the spark plug gap which ignites the premixed-gas. The discharge channel is elongated by in-cylinder gas flow and its behavior varies in each cycles.
Technical Paper

The Effect of Fuel Composition on Ignition Delay and Knocking in Lean Burn SI Engine

2017-11-05
2017-32-0112
Super lean burn technology is conceived as one of methods for improving the thermal efficiency of SI engines[1][2]. For lean burn, reduction of heat loss and the due to decrease in flame temperature can be expected. However, as the premixed gas dilutes, the combustion speed decreases, so the combustion fluctuation between cycles increases. Also, to improve the thermal efficiency, the ignition timing is advanced to advance the combustion phase. However, when the combustion phase is excessively advanced, knocking occurs, which hinders the improvement of thermal efficiency. Knocking is a phenomenon in which unburned gas in a combustion chamber compressed by a piston and combustion gas suffer compression auto-ignition. It is necessary to avoid knocking because the amplitude of the large pressure wave may cause noise and damage to the engine. Also, knocking is not a steady phenomenon but a phenomenon that fluctuates from cycle to cycle.
Technical Paper

Comparison of Eulerian and Lagrangian 1D Models of Diesel Fuel Injection and Combustion

2017-09-04
2017-24-0006
Diesel engines are being more commonly used for light automotive applications, due to their higher efficiency, despite the difficulty of depollution and extra associated costs. They require more accessories to function properly, such as turbocharging and post-treatment systems. The most important pollutants emitted from diesel engines are NOx and particles (in conventional engines), being difficult to reduce and control because reducing one increases the other. Low temperature combustion (LTC) diesel engines are able to reduce both pollutants, but increase emissions of CO and HC. Besides HCCI and EGR systems, one method that could achieve LTC conditions is by using multiple injections (pilot/main, split injection, etc.). However, understanding multiple diesel injection is no easy task, so far done by trial and error and complex 3D CFD models, or too simplified by 0D models. Therefore, a numerical 1D model is to be adapted to simulate multiple injection situations in a diesel engine.
Technical Paper

Experimental Investigation of an In-Cylinder Sampling Technique for the Evaluation of the Residual Gas Fraction

2017-09-04
2017-24-0042
Residual gas plays a crucial role in the combustion process of SI engines. It acts as a diluent and has a huge impact on pollutant emissions (NOx and CO emissions), engine efficiency and tendency to knock. Therefore, characterizing the residual gas fraction is an essential task for engine modelling and calibration purposes. Thus, an in-cylinder sampling technique has been developed on a spark ignition VVT engine to measure residual gas fraction. Two gas sampling valves were flush mounted to the combustion chamber walls; they are located between the 2 intake valves and between intake and exhaust valves respectively. In-cylinder gas was sampled during the compression stroke and stored in a sampling bag using a vacuum pump. The process was repeated during a large number of engine cycles in order to get a sufficient volume of gas which was then characterized with a standard gas analyzer.
Technical Paper

Resonance Charging Applied to a Turbo Charged Gasoline Engine for Transient Behavior Enhancement at Low Engine Speed

2017-09-04
2017-24-0146
Upcoming regulations and new technologies are challenging the internal combustion engine and increasing the pressure on car manufacturers to further reduce powertrain emissions. Indeed, RDE pushes engineering to keep low emissions not only at the bottom left of the engine map, but in the complete range of load and engine speeds. This means for gasoline engines that the strategy used to increase the low end torque and power by moving out of lambda one conditions is no longer sustainable. For instance scavenging, which helps to increase the enthalpy of the turbine at low engine speed cannot be applied and thus leads to a reduction in low-end torque. Similarly, enrichment to keep the exhaust temperature sustainable in the exhaust tract components cannot be applied any more. The proposed study aims to provide a solution to keep the low end torque while maintaining lambda at 1. The tuning of the air intake system helps to improve the volumetric efficiency using resonance charging effects.
Technical Paper

Combined Effects of Spark Discharge Pattern and Tumble Level on Cycle-to-Cycle Variations of Combustion at Lean Limits of SI Engine Operation

2017-03-28
2017-01-0677
Improving the thermal efficiency of spark ignition (SI) engine is strongly required due to its widespread use but considerably less efficiency than that of compression ignition (CI) engine. Although lean SI engine operation can offer substantial improvements of the thermal efficiency relative to that of traditional stoichiometric SI operation, the cycle-to-cycle variations of combustion increases with the level of air dilution, and becomes unacceptable. To improve the stability of lean operation, this study examines the effects of spark discharge pattern and tumble level on cycle-to-cycle variations of combustion at lean limits. The spark discharge pattern was altered by a custom inductive ignition system using ten spark coils and the tumble level was increased by a custom adapter installed in the intake port (tumble adapter).
Technical Paper

Effect of Heat Release Pattern of Flame during Propagation on Auto-Ignition Process of End-Gas

2016-04-05
2016-01-0701
Knock is a factor hindering enhancement of the thermal efficiency of spark ignition engines, and is an unsteady phenomenon that does not necessarily occur each cycle. In addition, the heat release history of the flame also fluctuates from cycle to cycle, and the auto-ignition process of the unburned mixture (end-gas), compressed by the global increase in pressure due to release of chemical energy, is affected by this fluctuation. Regarding auto-ignition of the end-gas, which can be the origin of knock, this study focused on the fluctuation of the flame heat release pattern, and used a zero-dimensional (0D) detailed chemical reaction calculation in an attempt to analyze and examine the consequence on the end-gas compression and auto-ignition process of changes in the i) start of combustion, ii) combustion duration and iii) center of heat release of the flame.
Technical Paper

An Investigation of the Effects of Fuel Concentration Inhomogeneity on HCCI Combustion -Fuel Concentration of Pre-Mixture Using LIF measurement-

2015-09-01
2015-01-1788
HCCI (Homogeneous Charge Compression Ignition) engine has a problem which causes knocking when the maximum PRR (Pressure Rise Rate) reaches a certain level because it takes the form of combustion of simultaneous multi-point ignition by compression of the air-fuel pre-mixture. This study focused on stratified charge of fuel in combustion chamber. This method disperses the timing of local ignition. The distribution of fuel concentration is measured by using LIF (Laser Induced Fluorescence). As a result, the maximum PRR is reduced by stratified charge of fuel. In addition, it is confirmed that the dispersion of combustion timing depends on the dispersion of fuel concentration.
Technical Paper

An Investigation into Cycle-to-Cycle Variations of IMEP using External EGR and Rebreathed EGR in an HCCI Engine, Based on Experimental and Single-Zone Modeling

2015-09-01
2015-01-1805
The characteristics of cycle-to-cycle variations of indicated mean effective pressure (IMEP) with combustion-phasing retard have been investigated experimentally and computationally in an homogeneous charge compression ignition (HCCI) engine using dimethyl ether (DME). The experiments were conducted in a single-cylinder HCCI research engine equipped with an exhaust gas recirculation (EGR) passage for external EGR and a two-stage exhaust cam for rebreathed EGR. To understand the chemical effects of rebreathed EGR, which is assumed to contribute to the autoignition enhancement, the computations were performed with a single-zone model of CHEMKIN using a chemical-kinetic mechanism developed by combining DME mechanism and NOx submechanism.
Technical Paper

Numerical Assessment of Controlling the Interval between Two Heat-Release Peaks for Noise Reduction in Split-injection PCCI Combustion

2015-09-01
2015-01-1851
In PCCI combustion with multiple injections, the mechanism having two heat release peaks which has a favorable characteristic of reducing noise is studied using numerical tool of single- and also multi-zone model of CHEMKIN PRO. In the present investigation, the physical issues, such as variations in the equivalent ratio and temperature caused by the fuel injection are simplified first so that the key issues of chemical reaction occurred in the combustion chamber can be extracted and are discussed in detail. The results show that the interval of two heat-release peaks can be controlled and as the number of zones of the calculation increases, the change in the timing of a heat release peak is increased but over three-zones, it is not affected any more. This indicates that to study about complex diesel combustion phenomena, three-to four-zone model shall give sufficiently accurate results.
Technical Paper

Numerical Investigation of a Potential of Dedicated EGR System for Increasing Thermal Efficiency of SI Engines Fueled with Methane and Propane

2015-09-01
2015-01-1883
This study tried to find a potential of dedicated EGR (d-EGR) system added to the four-cylinder spark ignition (SI) engine to decrease heat loss (Qheatloss) and improve thermal efficiency (ηth). Test fuels were chosen by methane and propane. PREMIX code in CHEMKIN-PRO was employed to calculate laminar burning velocity (SL) and flame temperature (Tf). Wiebe function and Wocshni's heat transfer coefficient were considered to calculate ηth. The results show that the d-EGR system increased ηth and it was higher than that of stoichiometric combustion of conventional SI engines due to the low Tf and fast SL.
Technical Paper

Examination of Discrete Dynamics Model for Diesel Combustion and Model-Based Feedback Control System (Second Report)

2015-09-01
2015-01-1848
The dynamics model and model-based controller (LQG servo controller) have been constructed to improve performance of diesel engine in transient condition. The input parameters of the model are fuel quantity of main injection, timing of main injection, fuel quantity of pilot injection, timing of pilot injection, external EGR ratio and boost pressure. The parameters that are succeeded between cycles to express transient condition are residual gas temperature and of residual oxygen. In the model, one cycle is discretized into 10 representative points. The precision of the accuracy of the model and the responsiveness of the controller were confirmed.
Journal Article

A Computational Study of the Combined Effects of EGR and Boost Pressure on HCCI Autoignition

2012-10-23
2012-32-0076
This study computationally investigates the combined effects of EGR and boost pressure on HCCI autoignition using iso-octane, PRF50 and n-heptane. The computations were conducted using the single-zone model of CHEMKIN included in CHEMKIN-PRO with detailed chemical-kinetics mechanisms for iso-octane, PRF and n-heptane from Lawrence Livermore National Laboratory (LLNL). To better reproduce the state of EGR addition in real engine, the EGR composition is determined after several combustion cycles under the constant amount of fuel. All data points were acquired with a CA50 of 5°CA aTDC by adjusting initial temperature to remove the effect of combustion phasing, which can influence on HCCI autoignition from any effect of the EGR and boost pressure themselves. The results show that EGR increases the burn duration and reduces the maximum pressure-rise rate with lower peak of maximum heat-release rates for all fuels even for a boost pressure, which accelerates a HCCI autoignition propensity.
Technical Paper

The Research about Engine Optimization and Emission Characteristic of Dual Fuel Engine Fueled with Natural Gas and Diesel

2012-10-23
2012-32-0008
CNG/diesel dual-fuel engine is using CNG as a main fuel, and injects diesel only a little as an ignition priming. In this study, remodeling an existing diesel engine into dual-fuel engine that can inject diesel with high pressure by CRDI (Common Rail Direct Injection), and injecting CNG at intake port for premixing. The results show that CNG/diesel dual-fuel engine satisfied coordinate torque and power with conventional diesel engine. And CNG alternation rate is over 89% in all operating ranges of CNG/diesel dual-fuel engine. PM emission is lower 94% than diesel engine, but NOx emission is higher than diesel engine. The output of dual fuel mode is 95% by the diesel mode. At this time, amount of CO₂ and PM are decreased while CO, NOx, and THC are increased. In NEDC mode, exhaust gases except NOx are decreased.
Technical Paper

A Study for Generating Power on Operating Parameters of Powerpack Utilizing Linear Engine

2012-10-23
2012-32-0061
The research shows the experimental results for a free piston linear engine according to operation conditions of the linear engine and the structure of linear generator for generating electric power. The powerpack used in this paper consists of the two-stroke free piston linear engine, linear generators and air compressors. Each parameter of fuel input heat, equivalence ratio, spark timing delay, electrical resistance and air gap length were set up to identify the combustion characteristics and to examine the performance of linear engine. The linear engine was fueled with propane. In the course of all linear engine operations, intake air was inputted under the wide open throttle state. Air and fuel mass flow rate were varied by using mass flow controller and these were premixed by pre-mixing device. Subsequently, pre-mixture was directly supplied into each cylinder.
Technical Paper

An Investigation on DME HCCI Engine about Combustion Phase Control using EGR Stratification by Numerical Analysis

2012-10-23
2012-32-0077
This work has been investigated the potential of in-cylinder EGR stratification for reducing the pressure rise rate of DME HCCI engines, and the coupling of both thermal stratification and fuel stratification. The numerical analyses were done by using five-zone version of CHEMKIN-II kinetics rate code, and kinetic mechanics for DME. The effects of inert components were used for the presence of EGR in calculation. Three cases of EGR stratification were tested on both thermal stratification and fuel stratification at the fixed initial temperature, pressure and fueling rate at BDC. In order to explore the appropriate stratification of EGR, EGR width was employed from zero to thirty percent. Firstly, EGR homogeneity case which means EGR width zero was examined. Secondly, EGR is located densely in hotter zone for combining with thermal stratification or in richer zone for a combination with fuel stratification. Lastly, the case was judged inversely with the second case.
Technical Paper

Potential of Exhaust Heat Recovery by Turbocompounding

2012-09-10
2012-01-1603
Energy recovery of internal combustion engines has proved to be of primary interest to increase engine global efficiency. The motivation behind is to meet future fuel economy requirements and more stringent emissions regulations. Among all engine waste, research has shown that exhaust energy is the most promising solution due to its high availability. In this context, this paper deals with the analysis of the potential of exhaust heat recovery, especially by a turbocompound system. Turbo-compounding is already established in heavy-duty engines, in which an additional stage of expansion is made through an exhaust recovery turbine. This technique is now being studied for small displacement engines. In the first part of this document, a short history on turbocompounding is presented. Then we present a simulation study conducted on AMESim software, using a 0D 2L diesel engine model, calibrated to fit real engine test bench results.
X