Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

External Knee Geometry Surface Variation as a Function of Subject Anthropometry and Flexion Angle for Human and Surrogate Subjects

2007-04-16
2007-01-1162
The current study was designed to compare the surface anatomy of the knee for different human subject anthropometries using a 3-D, non-contact digitizer which converted the anatomy into point clouds. The subjects were studied at flexion angles of 60, 90, and 120 degrees. Multiple subjects fitting narrow anthropometrical specifications were studied: 5th percentile female, 50th percentile male, and 95th percentile male. These data were then compared to a corresponding anthropometrical crash dummy knee which served as an unambiguous control. Intersubject human comparisons showed surface geometry variations which were an order of magnitude smaller than comparisons between the human and dummy knee. Large errors between the human and dummy were associated with the muscle bulk proximal and distal to the popliteal region and the rounder shape of the human knee.
Technical Paper

Considerations for Rollover Simulation

2004-03-08
2004-01-0328
Rollover crashes are responsible for a significant proportion of traffic fatalities each year, while they represent a relatively small proportion of all motor vehicle collisions. The purpose of this study was to focus on rollover events from an occupant's perspective to understand what type of industry test method, ATD, computer based model, and injury assessment measures are required to provide occupant protection during rollovers. Specific injuries most commonly experienced in rollovers along with the associated injury sources were obtained by review of 1998-2000 NASS-CDS records. These data suggest that models capable of predicting the likelihood of brain injuries, specifically subarachnoid and subdural hemorrhage, are desirable. Ideally, the model should also be capable of predicting the likelihood of rib fractures, lung contusions and shoulder (clavicular and scapular) fractures, and facet, pedicle, and vertebral body fractures in the cervical spine.
X