Refine Your Search

Topic

Author

Search Results

Technical Paper

Effect of Aftermarket Modifications on ADAS Functionality – 2022 Chevrolet Silverado Light Vehicle

2024-04-09
2024-01-1961
Advanced Driver Assistance Systems (ADAS) are becoming common on passenger cars and pickup trucks. Accordingly, the manufacturers and installers of aftermarket equipment for these vehicles have an interest in confirming the functionality of ADAS when their equipment is put in place. However, there is very little publicly available information on the effect of aftermarket components on original equipment ADAS. To address this deficiency, a research program was undertaken in which a 2022 Chevrolet Silverado 1500 light truck was tested in four different hardware configurations, including stock as well as three modified conditions. Aftermarket modifications to the vehicle consisted of increased tire diameters, a level kit, and two different lift kits. A series of physical tests were carried out to evaluate the ADAS performance of the vehicle with modifications.
Technical Paper

Sensor-Fused Low Light Pedestrian Detection System with Transfer Learning

2024-04-09
2024-01-2043
Objection detection using a camera sensor is essential for developing Advanced Driver Assistance Systems (ADAS) and Autonomous Driving (AD) vehicles. Due to the recent advancement in deep Convolution Neural Networks (CNNs), object detection based on CNNs has achieved state-of-the-art performance during daytime. However, using an RGB camera alone in object detection under poor lighting conditions, such as sun flare, snow, and foggy nights, causes the system's performance to drop and increases the likelihood of a crash. In addition, the object detection system based on an RGB camera performs poorly during nighttime because the camera sensors are susceptible to lighting conditions. This paper explores different pedestrian detection systems at low-lighting conditions and proposes a sensor-fused pedestrian detection system under low-lighting conditions, including nighttime. The proposed system fuses RGB and infrared (IR) thermal camera information.
Technical Paper

Cradle to Grave Comparison on Emission Produced by EV and ICE Powertrains

2024-04-09
2024-01-2402
Since the popularization of the Electric Vehicle (EV) there has been a large movement of consumers, governments, and the automotive industry due to its environmentally friendly characteristics. Unlike an IC engine, the batteries use multitudes of rare earth minerals and complex manufacturing processes which in some cases have been shown to produce as many emissions as an ICE vehicle over its entire lifespan. Another unnoticed important environmental concern has been the final recycling and disposal of the power train after its use. Unlike an ICE engine, which can be melted down or re-used, recycling batteries are much more difficult. In most cases the recycling process and the byproducts produced can be very harmful to the environment. This paper aims to be a complete cradle-to-grave analysis of all emissions produced in the life of an EV battery.
Technical Paper

Simulation Study of Vehicle Handling Characteristics on Snowy and Icy Terrain

2023-04-11
2023-01-0902
Safety is considered one of the most important parameters when designing a ground vehicle. The adverse effect of weather on a vehicle can lead to a surge in safety issues and accidents. Several safety assistance systems are available in modern vehicles, which are designed to lessen the negative effects of weather hazards. Although these safety systems can intervene during crucial conditions to avoid accidents, driving a vehicle on snowy or icy terrain can still be a challenging task. Road conditions with the least tire-road friction often results in poor vehicle handling, and without any kind of safety system it can lead to mishaps. With the use of Adams Car software and vehicle dynamics modeling, a realistic relationship between the vehicle and road surface may be established. The simulation can be used to have a better understanding of vehicle handling in snowy and icy conditions, tire-ice interaction, and tire modeling.
Technical Paper

Effect of High-Blend Ethanol Fuel on the Performance and Emissions of a Small Off-Road Engine with Minimal Modifications

2022-08-30
2022-01-1031
Much development in the automotive industry relates to the use of high-content ethanol blended fuels to reduce the emissions produced by on-road engines/vehicles. However, less research has been done on the effect of operating small off-road engines (SORE) on high-blend ethanol fuels without substantial modifications. Most manufacturers of such engines only certify proper operation on low content ethanol blends such as E10 (10% ethanol, 90% gasoline by volume). This paper focuses on the use of E77 fuel in a small off-road engine which is speed-governed. Such engines are commonly used in lawn mowers, small recreational vehicles, or other equipment. The exhaust emissions and performance of the engine were evaluated using the EPA 6-mode duty cycle for small recreational engines where testing and analysis followed the recommendations of SAE J1088. This test cycle consisted of operating the engine at steady state load points using a fixed engine speed.
Technical Paper

A Forward Collision Warning System Using Deep Reinforcement Learning

2020-04-14
2020-01-0138
Forward collision warning is one of the most challenging concerns in the safety of autonomous vehicles. A cooperation between many sensors such as LIDAR, Radar and camera helps to enhance the safety. Apart from the importance of having a reliable object detector, the safety system should have requisite capabilities to make reasonable decisions in the moment. In this work, we concentrate on detecting front vehicles of autonomous cars using a monocular camera, beyond only a detection method. In fact, we devise a solution based on a cooperation between a deep object detector and a reinforcement learning method to provide forward collision warning signals. The proposed method models the relation between acceleration, distance and collision point using the area of the bounding box related to the front vehicle. An agent of learning automata as a reinforcement learning method interacts with the environment to learn how to behave in eclectic hazardous situations.
Technical Paper

Structural Analysis and Design Modification of Seat Rail Structures in Various Operating Conditions

2020-04-14
2020-01-1101
This paper is based on, and in continuation of the work previously published in ASEE NCS Conference held in Grand Rapids, MI [1]. Automotive seating rail structures are one of the key components in the automotive industry because they carry the entire weight of passenger and they hold the structure for seating foams and other assembled key components such as side airbag and seatbelt systems. The entire seating is supported firmly and attached to the bottom bodywork of the vehicle through the linkage assembly called the seat rails. Seat rails are adjustable in their longitudinal motion which plays an important role in giving the passengers enough leg room to make them feel comfortable. Therefore, seat rails under the various operating conditions, should be able to withstand the weight of the passenger along with the other assembled parts as mentioned above. Also, functional requirements such as crash safety is very important to avoid or to minimize injuries to the occupants.
Technical Paper

Source Noise Isolation during Electric Vehicle Pass-By Noise Testing Using Multiple Coherence

2020-04-14
2020-01-1268
Due to the nearly silent operation of an electric motor, it is difficult for pedestrians to detect an approaching electric vehicle. To address this safety concern, the National Highway Traffic Safety Administration issued the Federal Motor Vehicle Safety Standard (FMVSS) No. 141, “Minimum Sound Requirements for Hybrid and Electric Vehicles”. This FMVSS 141 standard requires the measurement of electric vehicle noise according to certain test protocols; however, performing these tests can be difficult since inconsistent results can occur in the presence of transient background noise. Methods to isolate background noise during static sound measurements have already been established, though these methods are not directly applicable to a pass-by noise test where neither the background noise nor the vehicle itself as it travels past the microphone produce stationary sound signals.
Technical Paper

Automated 3D Printer Bed Clearing Mechanism

2020-04-14
2020-01-1301
The objective of this work was to design an automated bed clearing mechanism for the Anet brand A8 3D printer, which uses Fused Deposition Modeling (FDM) process. This work has been carried out as a capstone course. Many OEMs are focusing on using functional 3D printed parts to replace metal parts that otherwise require complex assemblies or to reduce weight. The concept behind the work presented in this paper was to allow every user to be able to print multiple parts without human interaction. This saves time to load and unload one part at a time. The idea was to develop a universal bed clearing mechanism that can be used for most brands of 3D printers. Upon researching into the many different styles and designs of printers, it became clear that the designs are different and complex to create a universal product. It was decided to aim for the most common style of 3D printers for which easy modeling and testing should be possible.
Technical Paper

Experimentation for Design Improvements for Coil Spring in the Independent Suspension

2020-04-14
2020-01-0503
The objective of this project is to analyze potential design changes that can improve the performance of helical spring in an independent suspension. The performance of the helical spring was based upon the result measure of maximum value of stress acting on it and the amount displacement caused when the spring undergoes loading. The design changes in the spring were limited to coil cross section, spring diameter (constant & variable), pitch and length of the spring. The project was divided into Stage I & Stage II. For Stage I, using all the possible combinations of these design parameters, linear stress analysis was performed on different spring designs and their Stress and displacement results were evaluated. Based on the results, the spring designs were classified as over designed or under designed springs.
Technical Paper

Structural Vibration and Acoustic Analysis of a 3-Phase AC Induction Motor

2019-06-05
2019-01-1458
This paper aims to study the NVH and acoustic performance of a 3-phase AC induction motor in order to develop an approach to reduce the magnetic component of noise from an electric motor in an electric vehicle (EV). The final goal of this project is to reduce the magnetic component of sound from the motor by making modifications to the end bracket of the motor housing. EVs are being considered the future of mobility mainly due to the fact that they are environment-friendly. As many companies are already investing in this technology, electric drives are set to become extremely popular in the years to come. The heart of an EV is its motor. Modern electric vehicles are quiet, furthermore with the lack of an IC engine to mask most sounds from other components, the sound from the electric motor and other auxiliary parts become more prominent.
Technical Paper

A Numerical Study on the Effect of Enhanced Mixing on Combustion and Emissions in Diesel Engines

2016-04-05
2016-01-0606
A numerical and experimental study of the use of air motion control, piston bowl shape, and injector configuration on combustion and emissions in diesel engines has been conducted. The objective of this study is to investigate the use of flow control within the piston bowl during compression to enhance fuel air mixing to achieve a uniform air-fuel mixture to reduce soot and NO emissions. In addition to flow control different piston bowl geometries and injector spray angles have been considered and simulated using three-dimensional computational fluid dynamics and experiments. The results include cylinder pressure and emissions measurements and contour plots of fuel mass fraction, soot, and NO. The results show that soot and NO emissions can be reduced by proper flow control and piston bowl design.
Technical Paper

Injury Sources for Second Row Occupants in Frontal Crashes Considering Age and Restraint Condition Influence

2015-04-14
2015-01-1451
The current study examined field data in order to document injury rates, injured body regions, and injury sources for persons seated in the second row of passenger vehicles. It was also intended to identify whether these varied with respect to age and restraint use in vehicles manufactured in recent years. Data from the 2007-2012 National Automotive Sampling System (NASS/CDS) was used to describe occupants seated in the second row of vehicles in frontal crashes. Injury plots, comparison of means and logistic regression analysis were used to seek factors associated with increased risk of injury. Restraint use reduced the risk of AIS ≥ 2 injury from approximately 1.8% to 5.8% overall. Seventy nine percent of the occupants in the weighted data set used either a lap and shoulder belt or child restraint system. The most frequently indicated injury source for persons with a MAIS ≥ 2 was “seat, back support”, across restraint conditions and for all but the youngest occupants.
Journal Article

A New Approach for Very Low Particulate Mass Emissions Measurement

2013-04-08
2013-01-1557
Pending reductions in light duty vehicle PM emissions standards from 10 to 3 mg/mi and below will push the limits of the gravimetric measurement method. At these levels the PM mass collected approaches the mass of non-particle gaseous species that adsorb onto the filter from exhaust and ambient air. This introduces an intrinsic lower limit to filter based measurement that is independent of improvements achieved in weighing metrology. The statistical variability of back-up filter measurements at these levels makes them an ineffective means for correcting the adsorption artifact. The proposed subtraction of a facility based estimate of the artifact will partially alleviate the mass bias from adsorption, but its impact on weighing variability remains a problem that can reach a significant fraction of the upcoming 3 and future 1 mg/mi standards. This paper proposes an improved PM mass method that combines the gravimetric filter approach with real time aerosol measurement.
Technical Paper

Child Restraint Systems: Top Tether Effectiveness in Side Impact Collisions

2013-04-08
2013-01-0601
Use of the top tether attachment in three commonly available anchor points provides added restraint of child restraint systems (CRS). Three tether attachment positions were used; floor, behind the head rest (parcel deck) and at the ceiling. The three anchor points are comparable in efficacy while no tether allows increased travel of the anthropomorphic test device (ATD) head. Two series of six tests were conducted at a max speed of 20 mph and peak deceleration of 16 G's using a deceleration sled test apparatus. The first series of tests was conducted at a 90 degree impact angle. On average there is 9% less head travel when using the tether attachment compared to not using the tether attachment, all other conditions begin equal. The second series of tests was conducted at a 73 degree impact angle, there is 15% less head travel when using the tether attachment compared to not using the tether attachment, all other conditions begin equal.
Technical Paper

Investigation of Airflow Induced Whistle Noise by HVAC Control Doors Utilizing a ‘V-Shape’ Rubber Seal

2011-05-17
2011-01-1615
Doors inside an automotive HVAC module are essential components to ensure occupant comfort by controlling the cabin temperature and directing the air flow. For temperature control, the function of a door is not only to close/block the airflow path via the door seal that presses against HVAC wall, but also control the amount of hot and cold airflow to maintain cabin temperature. To meet the stringent OEM sealing requirement while maintaining a cost-effective product, a “V-Shape” soft rubber seal is commonly used. However, in certain conditions when the door is in the position other than closed which creates a small gap, this “V-Shape” seal is susceptible to the generation of objectionable whistle noise for the vehicle passengers. This nuisance can easily reduce end-customer satisfaction to the overall HVAC performance.
Technical Paper

Design, Analysis, and Development Testing of Large Hood Plastic Mounted Trim Components

2011-04-12
2011-01-0490
Large hood mounted plastic trim components are subjected to complex and often extreme loading conditions. Typical loading conditions include solar and thermal cycling, as well as road and powertrain induced vibrations, aero lift and buffeting, and mechanical loads such as car wash. For the above components understanding and classifying the typical loading conditions is an essential and important step in achieving long term quality. This paper discusses different approaches to the design, analysis, development, and testing of plastic trim components. Samples of analysis and test results are presented to demonstrate how to identify and prevent the loss of the part function. Some useful guidelines and practices for addressing thermal expansion, dimensional variation, and redundancy in attachments are also discussed.
Technical Paper

Development of the Kettering University Snowmobile for the 2009 SAE Clean Snowmobile Challenge

2009-11-03
2009-32-0177
Affordable clean snowmobile technology has been developed. The goals of this design included reducing exhaust emissions to levels which are below the U.S Environmental Protection Agency (EPA) 2012 standard. Additionally, noise levels were to be reduced to below the noise mandates of 78 dB(A). Further, this snowmobile can operate using any blend of gasoline and ethanol from E0 to E85. Finally, achieving these goals would be a hollow victory if the cost and performance of the snowmobile were severely compromised. Snowmobiling is, after all, a recreational sport; thus the snowmobile must remain fun to drive and cost effective to produce. The details of this design effort including performance data are discussed in this paper. Specifically, the effort to modify a commercially available snowmobile using a two cylinder, four-stroke engine is described. This snowmobile was modified to run on a range of ethanol blended fuels using a closed-loop engine control system.
Technical Paper

Investigation of Joint Torque Characteristics for a Mechanical Counter - Pressure Spacesuit

2009-07-12
2009-01-2536
Mechanical counter-pressure (MCP) spacesuit designs have been a promising, but elusive alternative to historical and current gas pressurized spacesuit technology since the Apollo program. One of the important potential advantages of the approach is enhanced mobility as a result of reduced bulk and joint torques, but the literature provides essentially no quantitative joint torque data or quantitative analytical support. Decisions on the value of investment in MCP technology and on the direction of technology development are hampered by this lack of information since the perceived mobility advantages are an important factor. An experimental study of a simple mechanical counter-pressure suit (elbow) hinge joint has been performed to provide some test data and analytical background on this issue to support future evaluation of the technology potential and future development efforts.
Technical Paper

Development of Clean Snowmobile Technology for Operation on High-Blend Ethanol for the 2008 Clean Snowmobile Challenge

2008-09-09
2008-32-0053
Clean snowmobile technology has been developed using methods which can be applied in the real world with a minimal increase in cost. Specifically, a commercially available snowmobile using a two cylinder, four-stroke engine has been modified to run on high-blend ethanol (E-85) fuel. Additionally, a new exhaust system which features customized catalytic converters and mufflers to minimize engine noise and exhaust emissions has developed. Finally, a number of additional improvements have been made to the track to reduce friction and diminish noise. The results of these efforts include emissions reductions of 94% when compared with snowmobiles operating at the 2012 U.S. Federal requirements.
X