Refine Your Search

Search Results

Viewing 1 to 11 of 11
Technical Paper

Clutchless Geared Smart Transmission

2011-08-30
2011-01-2031
Most passenger vehicles employ manual or automatic transmission in their power train. Recently, some automated geared transmission including the dual clutch transmission is gaining popularity for its fuel efficiency and smooth driving as well as convenience. In this study, we are proposing a new much simplified clutchless geared transmission which may transmit most powerful torque employing the power-merge planetary gear system to the final drive during gear shift with excellent smoothness in the transmitted torque. This transmission might work for the most kinds of vehicles having internal combustion engine including the hybrid vehicles.
Technical Paper

The Effect of Injection Location of DME and LPG in a Dual Fuel HCCI Engine

2009-06-15
2009-01-1847
Dimethyl ether (DME) as a high cetane number fuel and liquefied petroleum gas (LPG) as a high octane number fuel were supplied together to evaluate the controllability of combustion phase and improvement of power and exhaust emission in homogeneous charge compression ignition (HCCI) engine. Each fuel was injected at the intake port and in the cylinder separately during the same cycle, i.e., DME in the cylinder and LPG at the intake port, or vice versa. Direct injection timing was varied from 200 to 340 crank angle degree (CAD) while port injection timing was fixed at 20 CAD. In general, the experimental results showed that DME direct injection with LPG port injection was the better way to increase the IMEP and reduce emissions. The direct injection timing of high cetane number fuel was important to control the auto-ignition timing because the auto-ignition was occurred at proper area, where the air and high cetane number fuel were well mixed.
Technical Paper

The Dual-Fueled Homogeneous Charge Compression Ignition Engine Using Liquefied Petroleum Gas and Di-methyl Ether

2007-08-05
2007-01-3619
The combustion, knock characteristics and exhaust emissions in an engine were investigated under homogeneous charge compression ignition operation fueled with liquefied petroleum gas with regard to variable valve timing and the addition of di-methyl ether. Liquefied petroleum gas was injected at an intake port as the main fuel in a liquid phase using a liquefied injection system, while a small amount of di-methyl ether was also injected directly into the cylinder during the intake stroke as an ignition promoter. Different intake valve timings and fuel injection amount were tested in order to identify their effects on exhaust emissions, combustion and knock characteristics. The optimal intake valve open timing for the maximum indicated mean effective pressure was retarded as the λTOTAL was decreased. The start of combustion was affected by the intake valve open timing and the mixture strength (λTOTAL) due to the volumetric efficiency and latent heat of vaporization.
Technical Paper

Fuel Stratification in a Liquid-Phase LPG Injection Engine

2003-05-19
2003-01-1777
To investigate the mixture distributions in an LPG engine with Liquid phase port injection for heavy duty vehicles, an optical single cylinder engine, which is optically accessible both in side and bottom view, and laser diagnostic system were incorporated to apply PLIF (planar laser induced fluorescence) technique. Acetone was used as a dopant in LPG fuel, which was excited by KrF excimer laser (248nm), and its fluorescence images were acquired with ICCD camera. The effects of fuel injection timing, swirl intensity and excess air ratio were investigated. For the case of open valve injection, favorable stratification of fuel, both in axial and radial direction, was clearly observed compared to the closed valve injection, where reverse stratification in axial direction was observed. At the Ricardo swirl ratio of 3.4, it was apparent that excessive axial stratification of fuel got dominant, which would lead to poor engine performances.
Technical Paper

Simulation of Fuel/Air Mixture Formation for Heavy Duty Liquid Phase LPG Injection (LPLI) Engines

2003-03-03
2003-01-0636
Submodels are developed for injection, evaporation and wall impingement of a liquid LPG spray. The injection model determines the quality of fuel as two-phase choke flow at the nozzle exit. Wind tunnel experiments show the spray penetration more sensitive to ambient flow velocity than to injection pressure. Most evaporation occurs during choking, while heat transfer from surrounding air has a negligible effect on downstream droplet sizes. Three dimensional simulation shows that the bathtub cavity is better than the dog-dish cavity for stable flame propagation in lean-burn conditions. The injection timing during the IVC period has a negligible effect, while injection during an intake stroke enhances fuel/air mixing to result in more homogeneous cylinder charge.
Technical Paper

Engine Controller for the Hydrocarbon Reduction During Cold Start in SI Engine

2002-05-06
2002-01-1666
In order to reduce hydrocarbon emission in gasoline engine, especially during warming-up period, it is necessary to estimate the fuel and fuel product flow rate in the emission gas. The intake airflow rate should also be estimated. A strategy was proposed to estimate air fuel ratio in a spark ignition engine. The mass of air in the cylinder was determined by filling-emptying method, and the fuel in the intake manifold and cylinder was estimated by the “wall-wetting” effect calculation. The use of graphical dynamic system control software is becoming more popular as automotive engineers strive to reduce the time to develop new control systems. The rapid prototype engine controller has been developed by using MATLAB, SIMULINK, REAL TIME WORKSHOP, xPC Target, and WATCOM C++. The sensor data from the engine will be transferred to computer, and the fuel delivery will be calculated.
Technical Paper

Flame Propagation Characteristics in a Heavy Duty LPG Engine with Liquid Phase Port Injection

2002-05-06
2002-01-1736
Combustion and flame propagation characteristics of the liquid phase LPG injection (LPLI) engine were investigated in a single cylinder optical engine. Lean burn operation is needed to reduce thermal stress of exhaust manifold and engine knock in a heavy duty LPG engine. An LPLI system has advantages on lean operation. Optimized engine design parameters such as swirl, injection timing and piston geometry can improve lean burn performance with LPLI system. In this study, the effects of piston geometry along with injection timing and swirl ratio on flame propagation characteristics were investigated. A series of bottom-view flame images were taken from direct visualization using a UV intensified high-speed CCD camera. Concepts of flame area speed, in addition to flame propagation patterns and thermodynamic heat release analysis, was introduced to analyze the flame propagation characteristics.
Technical Paper

Development of traction control system

2000-06-12
2000-05-0246
Two major roles of the traction control system (TCS) are to guarantee the acceleration performance and directional stability. This paper proposes a new slip controller which uses the brake and the throttle actuator simultaneously. To avoid measurement problems and get a simple structure, the brake controller is designed using Lyapunov redesign method and the throttle controller is designed using multiple sliding mode control. Through the hybrid use of brake and throttle controllers, the vehicle is insensitive to the variation of the vehicle mass, brake gain and road condition and can achieve required acceleration performance. For the directional stability, a new method to measure the mixture of yaw rate and lateral acceleration with the speed difference of non-driven wheels is proposed. Using this measurement, the controller imposes individual pressure to the driven wheels and can maintain stability in the cornering or the lane change on the slippery road.
Technical Paper

Modeling and design of hybrid control system for dual hybrid electric vehicle drivetrains

2000-06-12
2000-05-0046
This paper describes the modeling of dual hybrid electric vehicle drivetrain and proposes a hybrid control system for controlling the drivetrains. In dual hybrid electric drivetrains, the energy from the engine passes through the planetary gear set and is split into the generator and motor paths. A complete dual hybrid electric drivetrain system model is developed. The modeling process is discussed for each of the major components of dual hybrid electric drivetrain, such as planetary gear transmission, gasoline engine, motor, generator and vehicle dynamics. Integrated nonlinear model and effects of parameter variations are also studied. The hybrid control system which is a discrete-event system interacting with a continuous-state system, is suitable for modeling and control of the systems that have state jumps and dynamics changes. In this paper, on/off state of engine is treated as a discrete state of HEV system and, velocities and torques, etc., as continuous states.
Technical Paper

Hydrocarbon Emissions from a Gas Fueled SI Engine under Lean Burn Conditions

1999-10-25
1999-01-3512
The concentrations of individual exhaust hydrocarbon species were measured as a function of air-fuel ratio and EGR in a 2-liter four-cylinder engine using a gas chromatography, for natural gas and LPG. NMHC in addition to the species of HC, other emissions such as CO2, CO and NOx were at 1800rpm for two compression ratios (8.6 and 10.6) and various EGR ratios up to 7%. Fuel conversion efficiencies were also investigated together with emissions to study the effect of engine parameters on the combustion performances in gas engines especially under the lean burn conditions. It was found that CO2 emission decreased leaner mixture strength, the higher compression ratio and certainly with smaller C value of fuel. HC emissions from LPG engine consisted primarily of propane (larger 60%), ethylene and propylene, while main emissions from natural gas were methane (larger than 60%), ethane, ethylene and propane on the average.
Technical Paper

A Study on Efficiency and Emission Enhancements in a 4-Stroke Natural Gas Lean Burn Engine

1996-02-01
960849
Experiments were performed with a 4-stroke, natural gas fueled SI engine to investigate the effects of several parameters on engine performance under lean operating condition. A favorable effect of charge swirl on stable lean burn operation was observed at a conventional compression ratio. There was an optimum EGR rate which gave a substantial reduction in NOx emissions with minor penalties in efficiency and UHC emissions. Marginal improvement was noticed with lean operations in a long spark duration ignition system. The flame jet ignition system displayed noticeable capability in extending the lean limit. In addition, shadowgraph visualization tests were performed for combustion diagnostic purposes.
X