Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Expanding the Use of Vehicle Specific Power in Analysis of Platoon Performance

2024-04-09
2024-01-2057
Platooning is a coordinated driving strategy by which following trucks are placed into the wake of leading vehicles. Doing this leads to two primary benefits. First, the vehicles following are shielded from aerodynamic drag by a “pulling” effect. Secondly, by placing vehicles behind the leading truck, the leading vehicles experience a “pushing” effect. The reduction in aerodynamic drag leads to reduced fuel usage and, consequently, reduced greenhouse gas emissions. To maximize these effects, the inter-vehicle distance, or headway, needs to be minimized. In current platooning strategy iterations, Coordinated Adaptive Cruise Control (CACC) is used to maintain close following distances. Many of these strategies utilize the fuel rate signal as a controller cost function parameter. By using fuel rate, current control strategies have limited applicability to non-conventional powertrains.
Technical Paper

Effect of Cooling Airflow Intake Positioning on the Aerodynamics of a Simplified Battery Electric Road Vehicle

2024-04-09
2024-01-2521
The transition towards battery electric vehicles (BEVs) has increased the focus of vehicle manufacturers on energy efficiency. Ensuring adequate airflow through the heat exchanger is necessary to climatize the vehicle, at the cost of an increase in the aerodynamic drag. With lower cooling airflow requirements in BEVs during driving, the front air intakes could be made smaller and thus be placed with greater freedom. This paper explores the effects on exterior aerodynamics caused by securing a constant cooling airflow through intakes at various positions across the front of the vehicle. High-fidelity simulations were performed on a variation of the open-source AeroSUV model that is more representative of a BEV configuration. To focus on the exterior aerodynamic changes, and under the assumption that the cooling requirements would remain the same for a given driving condition, a constant mass flow boundary condition was defined at the cooling airflow inlets and outlets.
Technical Paper

Quantifying the Energy Impact of Autonomous Platooning-Imposed Longitudinal Dynamics

2023-04-11
2023-01-0896
Platooning has produced significant energy savings for vehicles in a controlled environment. However, the impact of real-world disturbances, such as grade and interactions with passenger vehicles, has not been sufficiently characterized. Follower vehicles in a platoon operate with both different aerodynamic drag and different velocity traces than while driving alone. While aerodynamic drag reduction usually dominates the change in energy consumption for platooning vehicles, the dynamics imposed on the follow vehicle by the lead vehicle and exogenous disturbances impacting the platoon can negate aerodynamic energy savings. In this paper, a methodology is proposed to link the change in longitudinal platooning dynamics with the energy consumption of a platoon follower in real time. This is accomplished by subtracting a predicted acceleration from measured longitudinal acceleration.
Technical Paper

Adaptive Actuator Delay Compensation for a Vehicle Lateral Control System

2023-04-11
2023-01-0677
Steering actuator lag is detrimental to the performance of lateral control systems and often leads to oscillation, reduced stability margins, and in some cases, instability. If the actuator lag is significant, compensation is required to maintain stability and meet performance specifications. Many recent works use a high-level approach to compensate for delay by utilizing model-based methods such as model predictive control (MPC). While these methods are effective when accurate models of both the vehicle and the actuator are available, they are susceptible to model errors. This work presents a low-level, adaptive control architecture to compensate for unknown or varying steering delay and dynamics. Using an inner-loop controller to regulate steer angle commands, oscillation can be reduced, and stability margins can be maintained without the need for an accurate vehicle model.
Technical Paper

Experimentally Establishing Ideal Platooning Performance as a Metric for Real-World Platooning Assessment

2022-03-29
2022-01-0069
Platooning heavy-duty trucks decreases aerodynamic drag for following trucks, reducing energy consumption, and increasing both range and mileage. Previous platooning experimentation has demonstrated fuel economy benefits in two-, three-, and four-truck configurations. However, exogenous variables disturb the ability of these platoons to maintain the desired formation, causing an accordion effect within the platoon and reducing energy benefits via acceleration/deceleration events. This phenomenon is increasingly exacerbated as platoon size and road grade variations increase. The current work assesses how platoon size, road curvature, and road grade influence platoon energy efficiency. Fuel consumption rate is experimentally quantified for four heterogeneous Class 8 vehicles operating in standalone (baseline), two-, and four-truck platooning configurations to assess fuel consumption changes while driving through diverse road conditions.
Technical Paper

New Metrics for Quantifying the Energy Efficiency of Platoons in the Presence of Disturbances

2022-03-29
2022-01-0526
Due to aerodynamic drag reduction, vehicles may have significant energy savings while platooning in close succession. However, when circumstances force active deceleration to maintain the platoon, such as during vehicle cut-ins or grade changes, the aerodynamic efficiency benefits may be undermined by losses in kinetic energy. In this work, a theoretical relationship is derived to correlate the amount of active deceleration a vehicle experiences with energy efficiency. The derived relationship is leveraged to analyze platooning data from the last vehicle in a class 8 vehicle platoon. The data include both two- and four-truck platoons operating under nine different truck-to-truck gap control strategies. Using J1939 CAN data and GPS-estimated grade profiles, off-throttle data were isolated and longitudinal acceleration is estimated as a function of grade using Kalman filtering.
Journal Article

Snow Contamination of Simplified Automotive Bluff Bodies: A Comparison Between Wind Tunnel Experiments and Numerical Modeling

2022-03-29
2022-01-0901
We describe experiments and numerical modeling of snow surface contamination on two simplified automotive bluff bodies: The Ahmed body and a wedge. The purpose was twofold: 1) To obtain well defined experimental results of snow contamination on simple geometries; 2) To propose a numerical modeling approach for snow contamination. The experiments were performed in a climatic wind tunnel using a snow cannon at −15 °C and the results show that the snow accumulation depends on the aerodynamics of the studied bluff bodies. Snow accumulates on surfaces in proximity to the aerodynamic wakes of the bodies and characteristic snow patterns are obtained on side surfaces. The numerical modeling approach consisted of an aerodynamic setup coupled with Lagrangian particle tracking. Particles were determined to adhere or rebound depending on an adhesion model combined with a resuspension criterion.
Journal Article

Experimental Investigation of the Aerodynamic Benefits of Truck Platooning: Two- and Four-Vehicle Platoons

2021-04-06
2021-01-0942
A series of scaled wind tunnel tests are conducted to investigate the aerodynamic benefits of heavy vehicle platooning and the availability of cooling air for trailing vehicles on two- and four-vehicle platoons. To measure the aerodynamic drag, scale models are mounted onto a splitter plate by means of a low-friction linear bearing and a load cell located within each model trailer. In addition to drag, pressure measurements are made with a pitot probe positioned at the center of each model radiator grill. Four homogeneous, two-vehicle platoons are tested for spacings up to 300′ and six heterogeneous, four-vehicle platoons are tested with spacings ranging from 30′ to 50′. For the heterogeneous platoons, configurations are tested with one distinct heavy vehicle or medium duty vehicle, as well as with four distinct heavy vehicles. Over spacings of 15′ to 80′, the best performing homogeneous, two-vehicle platoons are comprised of a Supertruck tractor and straight frame trailer.
Journal Article

Track-Based Aerodynamic Testing of a Two-Truck Platoon

2021-04-06
2021-01-0941
Fuel savings from truck platooning are generally attributed to an aerodynamic drag-reduction phenomena associated with close-proximity driving. The current paper is the third in a series of papers documenting track testing of a two-truck platoon with a Cooperative Adaptive Cruise Control (CACC) system where fuel savings and aerodynamics measurements were performed simultaneously. Constant-speed road-load measurements from instrumented driveshafts and on-board wind anemometry were combined with vehicle measurements to calculate the aerodynamic drag-area of the vehicles. The drag-area results are presented for each vehicle in the two-truck platoon, and the corresponding drag-area reductions are shown for a variety of conditions: gap separation distances (9 m to 87 m), lateral offsets (up to 1.3 m), dry-van and flatbed trailers, and in the presence of surrounding traffic.
Technical Paper

Experimental Investigation of Low Cost, Low Thermal Conductivity Thermal Barrier Coating on HCCI Combustion, Efficiency, and Emissions

2020-04-14
2020-01-1140
In-cylinder surface temperature is of heightened importance for Homogeneous Charge Compression Ignition (HCCI) combustion since the combustion mechanism is thermo-kinetically driven. Thermal Barrier Coatings (TBCs) selectively manipulate the in-cylinder surface temperature, providing an avenue for improving thermal and combustion efficiency. A surface temperature swing during combustion/expansion reduces heat transfer losses, leading to more complete combustion and reduced emissions. At the same time, achieving a highly dynamic response sidesteps preheating of charge during intake and eliminates the volumetric efficiency penalty. The magnitude and temporal profile of the dynamic surface temperature swing is affected by the TBC material properties, thickness, morphology, engine speed, and heat flux from the combustion process. This study follows prior work of authors with Yttria Stabilized Zirconia, which systematically engineered coatings for HCCI combustion.
Journal Article

Impact of Mixed Traffic on the Energy Savings of a Truck Platoon

2020-04-14
2020-01-0679
A two-truck platoon based on a prototype cooperative adaptive cruise control (CACC) system was tested on a closed test track in a variety of realistic traffic and transient operating scenarios - conditions that truck platoons are likely to face on real highways. The fuel consumption for both trucks in the platoon was measured using the SAE J1321 gravimetric procedure as well as calibrated J1939 instantaneous fuel rate, serving as proxies to evaluate the impact of aerodynamic drag reduction under constant-speed conditions. These measurements demonstrate the effects of: the presence of a multiple-passenger-vehicle pattern ahead of and adjacent to the platoon, cut-in and cut-out manoeuvres by other vehicles, transient traffic, the use of mismatched platooned vehicles (van trailer mixed with flatbed trailer), and the platoon following another truck with adaptive cruise control (ACC).
Technical Paper

Uncertainty Quantification of Flow Uniformity Measurements in a Slotted Wall Wind Tunnel

2019-04-02
2019-01-0656
The need for a more complete understanding of the flow behavior in aerodynamic wind tunnels has increased as they have become vital tools not only for vehicle development, but also for vehicle certification. One important aspect of the behavior is the empty test section flow, which in a conventional tunnel should be as uniform as possible. In order to assess the uniformity and ensure consistent behavior over time, accurate measurements need to be performed regularly. Furthermore, the uncertainties and errors of the measurements need to be minimized in order to resolve small non-uniformities. In this work, the quantification of the measurement uncertainties from the full measurement chain of the new flow uniformity measurement rig for the Volvo Cars aerodynamic wind tunnel is presented. The simulation based method used to account for flow interference of the probe mount is also discussed.
Technical Paper

Modeling the Effect of Thermal Barrier Coatings on HCCI Engine Combustion Using CFD Simulations with Conjugate Heat Transfer

2019-04-02
2019-01-0956
Thermal barrier coatings with low conductivity and low heat capacity have been shown to improve the performance of homogeneous charge compression ignition (HCCI) engines. These coatings improve the combustion process by reducing heat transfer during the hot portion of the engine cycle without the penalty thicker coatings typically have on volumetric efficiency. Computational fluid dynamic simulations with conjugate heat transfer between the in-cylinder fluid and solid piston of a single cylinder HCCI engine with exhaust valve rebreathing are carried out to further understand the impacts of these coatings on the combustion process. For the HCCI engine studied with exhaust valve rebreathing, it is shown that simulations needed to be run for multiple engine cycles for the results to converge given how sensitive the rebreathing process is to the residual gas state.
Journal Article

The Effects of Wheel Design on the Aerodynamic Drag of Passenger Vehicles

2019-04-02
2019-01-0662
Approximately 25 % of a passenger vehicle’s aerodynamic drag comes directly or indirectly from its wheels, indicating that the rim geometry is highly relevant for increasing the vehicle’s overall energy efficiency. An extensive experimental study is presented where a parametric model of the rim design was developed, and statistical methods were employed to isolate the aerodynamic effects of certain geometric rim parameters. In addition to wind tunnel force measurements, this study employed the flowfield measurement techniques of wake surveys, wheelhouse pressure measurements, and base pressure measurements to investigate and explain the most important parameters’ effects on the flowfield. In addition, a numerical model of the vehicle with various rim geometries was developed and used to further elucidate the effects of certain geometric parameters on the flow field.
Technical Paper

Experimental Investigation of the Aerodynamic Benefits of Truck Platooning

2018-04-03
2018-01-0732
Lawrence Livermore National Laboratory (LLNL) has conducted a series of scaled wind tunnel tests to investigate the aerodynamic benefits of heavy vehicle platooning and the availability of cooling air for trailing vehicles on two- and three-vehicle platoons. To measure the aerodynamic drag, scale models are mounted onto a LLNL designed splitter plate by means of a low-friction linear bearing and a load cell located within each model trailer. In addition to drag, pressure measurements are made with a pitot probe positioned at the center of each model radiator grill. Particle Image Velocimetry (PIV) and Infrared Thermography (IRT) measurements are used to map the three-dimensional velocity field and flow structures around the vehicles.
Technical Paper

Refining Measurement Uncertainties in HCCI/LTGC Engine Experiments

2018-04-03
2018-01-1248
This study presents estimates for measurement uncertainties for a Homogenous Charge Compression Ignition (HCCI)/Low-Temperature Gasoline Combustion (LTGC) engine testing facility. A previously presented framework for quantifying those uncertainties developed uncertainty estimates based on the transducers manufacturers’ published tolerances. The present work utilizes the framework with improved uncertainty estimates in order to more accurately represent the actual uncertainties of the data acquired in the HCCI/LTGC laboratory, which ultimately results in a reduction in the uncertainty from 30 to less than 1 kPa during the intake and exhaust strokes. Details of laboratory calibration techniques and commissioning runs are used to constrain the sensitivities of the transducers relative to manufacturer supplied values.
Technical Paper

Quantifying Uncertainty in Predictions of Kinetically Modulated Combustion: Application to HCCI Using a Detailed Transportation Fuel Model

2018-04-03
2018-01-1251
Simulation of chemical kinetic processes in combustion engine environments has become ubiquitous towards the understanding of combustion phenomenology, the evaluation of controlling parameters, and the design of configurations and/or control strategies. Such calculations are not free from error however, and the interpretation of simulation results must be considered within the context of uncertainties in the chemical kinetic model. Uncertainties arise due to structural issues (e.g., included/missing reaction pathways), as well as inaccurate descriptions of kinetic rate parameters and thermochemistry. In fundamental apparatuses like rapid compression machines and shock tubes, computed constant-volume ignition delay times for simple, single-component fuels can have variations on the order of factors of 2-4.
Journal Article

A Framework for Quantifying Measurement Uncertainties and Uncertainty Propagation in HCCI/LTGC Engine Experiments

2017-03-28
2017-01-0736
In this paper, a framework for estimating experimental measurement uncertainties for a Homogenous Charge Compression Ignition (HCCI)/Low-Temperature Gasoline Combustion (LTGC) engine testing facility is presented. Detailed uncertainty quantification is first carried out for the measurement of the in-cylinder pressure, whose variations during the cycle provide most of the information for performance evaluation. Standard uncertainties of other measured quantities, such as the engine geometry and speed, the air and fuel flow rate and the intake/exhaust dry molar fractions are also estimated. Propagating those uncertainties using a Monte Carlo simulation and Bayesian inference methods then allows for estimation of uncertainties of the mass-average temperature and composition at IVC and throughout the cycle; and also of the engine performances such as gross Integrated Mean Effective Pressure, Heat Release and Ringing Intensity.
Journal Article

Development and Validation of a Reduced Order Model Incorporating a Semi-Empirical Degradation Model for Pouch Type LiFePO4/Graphite Cells

2017-03-28
2017-01-1218
We propose a reduced order model (ROM) for LFP/graphite cells derived from the electrochemical thermal principles that considers degradation effects and validated against experimental data obtained from a large format pouch type LFP/graphite cell whose nominal capacity is 20Ah. The characteristics of the two-phase transition and path dependence were taken into account in the ROM using a shrinking-core model with a moving interface that presents lithium rich and deficient phase. Different currents (0.1/1/3/4C) were applied to fresh cells at different ambient temperatures (25/35/45°C). Comparison between simulated results of the ROM and the collected experimental data shows a good match. The path dependence was also analyzed experimentally. For degradation model, side reaction is treated as the predominant cause of degradation of cells, which are affected by the operating conditions, such as temperature and SOC cycling range.
Technical Paper

Experimental Comparison of Heat Losses in Stepped-Bowl and Re-Entrant Combustion Chambers in a Light Duty Diesel Engine

2016-04-05
2016-01-0732
Heat loss is one of the greatest energy losses in engines. More than half of the heat is lost to cooling media and exhaust losses, and they thus dominate the internal combustion engine energy balance. Complex processes affect heat loss to the cylinder walls, including gas motion, spray-wall interaction and turbulence levels. The aim of this work was to experimentally compare the heat transfer characteristics of a stepped-bowl piston geometry to a conventional re-entrant diesel bowl studied previously and here used as the baseline geometry. The stepped-bowl geometry features a low surface-to-volume ratio compared to the baseline bowl, which is considered beneficial for low heat losses. Speed, load, injection pressure, swirl level, EGR rate and air/fuel ratio (λ) were varied in a multi-cylinder light duty engine operated in conventional diesel combustion (CDC) mode.
X