Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Effect of Cooling Airflow Intake Positioning on the Aerodynamics of a Simplified Battery Electric Road Vehicle

2024-04-09
2024-01-2521
The transition towards battery electric vehicles (BEVs) has increased the focus of vehicle manufacturers on energy efficiency. Ensuring adequate airflow through the heat exchanger is necessary to climatize the vehicle, at the cost of an increase in the aerodynamic drag. With lower cooling airflow requirements in BEVs during driving, the front air intakes could be made smaller and thus be placed with greater freedom. This paper explores the effects on exterior aerodynamics caused by securing a constant cooling airflow through intakes at various positions across the front of the vehicle. High-fidelity simulations were performed on a variation of the open-source AeroSUV model that is more representative of a BEV configuration. To focus on the exterior aerodynamic changes, and under the assumption that the cooling requirements would remain the same for a given driving condition, a constant mass flow boundary condition was defined at the cooling airflow inlets and outlets.
Journal Article

Snow Contamination of Simplified Automotive Bluff Bodies: A Comparison Between Wind Tunnel Experiments and Numerical Modeling

2022-03-29
2022-01-0901
We describe experiments and numerical modeling of snow surface contamination on two simplified automotive bluff bodies: The Ahmed body and a wedge. The purpose was twofold: 1) To obtain well defined experimental results of snow contamination on simple geometries; 2) To propose a numerical modeling approach for snow contamination. The experiments were performed in a climatic wind tunnel using a snow cannon at −15 °C and the results show that the snow accumulation depends on the aerodynamics of the studied bluff bodies. Snow accumulates on surfaces in proximity to the aerodynamic wakes of the bodies and characteristic snow patterns are obtained on side surfaces. The numerical modeling approach consisted of an aerodynamic setup coupled with Lagrangian particle tracking. Particles were determined to adhere or rebound depending on an adhesion model combined with a resuspension criterion.
Journal Article

Experimental Investigation of the Aerodynamic Benefits of Truck Platooning: Two- and Four-Vehicle Platoons

2021-04-06
2021-01-0942
A series of scaled wind tunnel tests are conducted to investigate the aerodynamic benefits of heavy vehicle platooning and the availability of cooling air for trailing vehicles on two- and four-vehicle platoons. To measure the aerodynamic drag, scale models are mounted onto a splitter plate by means of a low-friction linear bearing and a load cell located within each model trailer. In addition to drag, pressure measurements are made with a pitot probe positioned at the center of each model radiator grill. Four homogeneous, two-vehicle platoons are tested for spacings up to 300′ and six heterogeneous, four-vehicle platoons are tested with spacings ranging from 30′ to 50′. For the heterogeneous platoons, configurations are tested with one distinct heavy vehicle or medium duty vehicle, as well as with four distinct heavy vehicles. Over spacings of 15′ to 80′, the best performing homogeneous, two-vehicle platoons are comprised of a Supertruck tractor and straight frame trailer.
Technical Paper

Uncertainty Quantification of Flow Uniformity Measurements in a Slotted Wall Wind Tunnel

2019-04-02
2019-01-0656
The need for a more complete understanding of the flow behavior in aerodynamic wind tunnels has increased as they have become vital tools not only for vehicle development, but also for vehicle certification. One important aspect of the behavior is the empty test section flow, which in a conventional tunnel should be as uniform as possible. In order to assess the uniformity and ensure consistent behavior over time, accurate measurements need to be performed regularly. Furthermore, the uncertainties and errors of the measurements need to be minimized in order to resolve small non-uniformities. In this work, the quantification of the measurement uncertainties from the full measurement chain of the new flow uniformity measurement rig for the Volvo Cars aerodynamic wind tunnel is presented. The simulation based method used to account for flow interference of the probe mount is also discussed.
Journal Article

The Effects of Wheel Design on the Aerodynamic Drag of Passenger Vehicles

2019-04-02
2019-01-0662
Approximately 25 % of a passenger vehicle’s aerodynamic drag comes directly or indirectly from its wheels, indicating that the rim geometry is highly relevant for increasing the vehicle’s overall energy efficiency. An extensive experimental study is presented where a parametric model of the rim design was developed, and statistical methods were employed to isolate the aerodynamic effects of certain geometric rim parameters. In addition to wind tunnel force measurements, this study employed the flowfield measurement techniques of wake surveys, wheelhouse pressure measurements, and base pressure measurements to investigate and explain the most important parameters’ effects on the flowfield. In addition, a numerical model of the vehicle with various rim geometries was developed and used to further elucidate the effects of certain geometric parameters on the flow field.
Technical Paper

Experimental Investigation of the Aerodynamic Benefits of Truck Platooning

2018-04-03
2018-01-0732
Lawrence Livermore National Laboratory (LLNL) has conducted a series of scaled wind tunnel tests to investigate the aerodynamic benefits of heavy vehicle platooning and the availability of cooling air for trailing vehicles on two- and three-vehicle platoons. To measure the aerodynamic drag, scale models are mounted onto a LLNL designed splitter plate by means of a low-friction linear bearing and a load cell located within each model trailer. In addition to drag, pressure measurements are made with a pitot probe positioned at the center of each model radiator grill. Particle Image Velocimetry (PIV) and Infrared Thermography (IRT) measurements are used to map the three-dimensional velocity field and flow structures around the vehicles.
Technical Paper

Refining Measurement Uncertainties in HCCI/LTGC Engine Experiments

2018-04-03
2018-01-1248
This study presents estimates for measurement uncertainties for a Homogenous Charge Compression Ignition (HCCI)/Low-Temperature Gasoline Combustion (LTGC) engine testing facility. A previously presented framework for quantifying those uncertainties developed uncertainty estimates based on the transducers manufacturers’ published tolerances. The present work utilizes the framework with improved uncertainty estimates in order to more accurately represent the actual uncertainties of the data acquired in the HCCI/LTGC laboratory, which ultimately results in a reduction in the uncertainty from 30 to less than 1 kPa during the intake and exhaust strokes. Details of laboratory calibration techniques and commissioning runs are used to constrain the sensitivities of the transducers relative to manufacturer supplied values.
Technical Paper

Quantifying Uncertainty in Predictions of Kinetically Modulated Combustion: Application to HCCI Using a Detailed Transportation Fuel Model

2018-04-03
2018-01-1251
Simulation of chemical kinetic processes in combustion engine environments has become ubiquitous towards the understanding of combustion phenomenology, the evaluation of controlling parameters, and the design of configurations and/or control strategies. Such calculations are not free from error however, and the interpretation of simulation results must be considered within the context of uncertainties in the chemical kinetic model. Uncertainties arise due to structural issues (e.g., included/missing reaction pathways), as well as inaccurate descriptions of kinetic rate parameters and thermochemistry. In fundamental apparatuses like rapid compression machines and shock tubes, computed constant-volume ignition delay times for simple, single-component fuels can have variations on the order of factors of 2-4.
Journal Article

A Framework for Quantifying Measurement Uncertainties and Uncertainty Propagation in HCCI/LTGC Engine Experiments

2017-03-28
2017-01-0736
In this paper, a framework for estimating experimental measurement uncertainties for a Homogenous Charge Compression Ignition (HCCI)/Low-Temperature Gasoline Combustion (LTGC) engine testing facility is presented. Detailed uncertainty quantification is first carried out for the measurement of the in-cylinder pressure, whose variations during the cycle provide most of the information for performance evaluation. Standard uncertainties of other measured quantities, such as the engine geometry and speed, the air and fuel flow rate and the intake/exhaust dry molar fractions are also estimated. Propagating those uncertainties using a Monte Carlo simulation and Bayesian inference methods then allows for estimation of uncertainties of the mass-average temperature and composition at IVC and throughout the cycle; and also of the engine performances such as gross Integrated Mean Effective Pressure, Heat Release and Ringing Intensity.
Technical Paper

Experimental Comparison of Heat Losses in Stepped-Bowl and Re-Entrant Combustion Chambers in a Light Duty Diesel Engine

2016-04-05
2016-01-0732
Heat loss is one of the greatest energy losses in engines. More than half of the heat is lost to cooling media and exhaust losses, and they thus dominate the internal combustion engine energy balance. Complex processes affect heat loss to the cylinder walls, including gas motion, spray-wall interaction and turbulence levels. The aim of this work was to experimentally compare the heat transfer characteristics of a stepped-bowl piston geometry to a conventional re-entrant diesel bowl studied previously and here used as the baseline geometry. The stepped-bowl geometry features a low surface-to-volume ratio compared to the baseline bowl, which is considered beneficial for low heat losses. Speed, load, injection pressure, swirl level, EGR rate and air/fuel ratio (λ) were varied in a multi-cylinder light duty engine operated in conventional diesel combustion (CDC) mode.
Technical Paper

Investigations of the Rear-End Flow Structures on a Sedan Car

2016-04-05
2016-01-1606
The aerodynamic drag, fuel consumption and hence CO2 emissions, of a road vehicle depend strongly on its flow structures and the pressure drag generated. The rear end flow which is an area of complex three-dimensional flow structures, contributes to the wake development and the overall aerodynamic performance of the vehicle. This paper seeks to provide improved insight into this flow region to better inform future drag reduction strategies. Using experimental and numerical techniques, two vehicle shapes have been studied; a 30% scale model of a Volvo S60 representing a 2003MY vehicle and a full scale 2010MY S60. First the surface topology of the rear end (rear window and trunk deck) of both configurations is analysed, using paint to visualise the skin friction pattern. By means of critical points, the pattern is characterized and changes are identified studying the location and type of the occurring singularities.
Technical Paper

Interior Sound of Today's Electric Cars: Tonal Content, Levels and Frequency Distribution

2015-06-15
2015-01-2367
When it comes to the acoustic properties of electric cars, the powertrain noise differs dramatically compared to traditional vehicles with internal combustion engines. The low frequency firing orders, mechanical and combustion noise are exchanged with a more high frequency whining signature due to electromagnetic forces and gear meshing, lower in level but subject to annoyance. Previous studies have highlighted these differences and also investigated relevant perception criteria in terms of psycho-acoustic metrics. However, investigations of differences between different kinds of electric and hybrid electric cars are still rare. The purpose of this paper was to present the distribution of tonal components in today's hybrid/electric vehicles. More specifically, the number of prominent orders, their maximum levels and frequency separation were analyzed for the most critical driving conditions. The study is based upon measurements made on 13 electrified cars on the market.
Journal Article

Structures of Flow Separation on a Passenger Car

2015-04-14
2015-01-1529
The phenomenon of three-dimensional flow separation is and has been in the focus of many researchers. An improved understanding of the physics and the driving forces is desired to be able to improve numerical simulations and to minimize aerodynamic drag over bluff bodies. To investigate the sources of separation one wants to understand what happens at the surface when the flow starts to detach and the upwelling of the streamlines becomes strong. This observation of a flow leaving the surface could be captured by investigating the limiting streamlines and surface parameters as pressure, vorticity or the shear stress. In this paper, numerical methods are used to investigate the surface pressure and flow patterns on a sedan passenger vehicle. Observed limiting streamlines are compared to the pressure distribution and their correlation is shown. For this investigation the region behind the antenna and behind the wheel arch, are pointed out and studied in detail.
Technical Paper

Injected Droplet Size Effects on Diesel Spray Results with RANS and LES Turbulence Models

2015-04-14
2015-01-0925
Injection spray dynamics is known to be of great importance when modeling turbulent multi-phase flows in diesel engines. Two key aspects of spray dynamics are liquid breakup and penetration, both of which are affected by the initial sizes of the injected droplets. In the current study, injection of liquid n-heptane is characterized with initial droplet sizes with diameters on the order of 0.10 - 0.25 nozzle diameters. This is done for a Reynolds Averaged Navier-Stokes (RANS) RNG k-ε turbulence model with a minimum grid size of 125 μm and for a Large Eddy Simulations (LES) viscosity turbulence model with a minimum grid size of 62.5 μm. The results of both turbulence models are validated against non-reacting experimental data from the Engine Combustion Network (ECN). The results show that the injected droplet sizes have a significant impact on both liquid and vapor penetration lengths.
Technical Paper

Reduction of Fuel Consumption and Engine-out NOx Emissions in a Lean Homogeneous GDI Combustion System, Utilizing Valve Timing and an Advanced Ignition System

2015-04-14
2015-01-0776
This study investigated how the amount of dilution applied can be extended while maintaining normal engine operation in a GDI engine. Adding exhaust gases or air to a stoichiometric air/fuel mixture yields several advantages regarding fuel consumption and engine out emissions. The aim of this paper is to reduce fuel consumption by means of diluted combustion, an advanced ignition system and adjusted valve timing. Tests were performed on a Volvo four-cylinder engine equipped with a dual coil ignition system. This system made it possible to extend the ignition duration and current. Furthermore, a sweep was performed in valve timing and type of dilution, i.e., air or exhaust gases. While maintaining a CoV in IMEP < 5%, the DCI system was able to extend the maximum lambda value by 0.1 - 0.15. Minimizing valve overlap increased lambda by an additional 0.1.
Technical Paper

Wake and Unsteady Surface-Pressure Measurements on an SUV with Rear-End Extensions

2015-04-14
2015-01-1545
Previous research on both small-scale and full-scale vehicles shows that base extensions are an effective method to increase the base pressure, enhancing pressure recovery and reducing the wake size. These extensions decrease drag at zero yaw, but show an even larger improvement at small yaw angles. In this paper, rear extensions are investigated on an SUV in the Volvo Cars Aerodynamic Wind Tunnel with focus on the wake flow and on the unsteady behavior of the surface pressures near the base perimeter. To increase the effect of the extensions on the wake flow, the investigated configurations have a closed upper- and lower grille (closed-cooling) and the underbody has been smoothed with additional panels. This paper aims to analyze differences in flow characteristics on the wake of an SUV at 0° and 2.5° yaw, caused by different sets of extensions attached to the base perimeter. Extensions with several lengths are investigated with and without a kick.
Technical Paper

Measurements of Time-Resolved Mass Injection Rates for a Multi-Hole and an Outward Opening Piezo GDI Injector

2015-04-14
2015-01-0929
Time-resolved mass injection rates of an outward opening piezo-actuated and a solenoid actuated multi-hole GDI injector were measured to investigate (1) the influence of both hardware and software settings and (2) the influence on the injection rates from a wide range of operational parameters and (3) discuss limitations and issues with this measurement technique. The varied operating parameters were fuel pressure, back-pressure, electrical pulse width, single/double injection and injection frequency. The varied hardware/software parameters were injector protrusion, upstream fuel pressure condition and the cut-off frequency of the software's low-pass filter. Signal quality was found to be dependent on both hardware and software settings, especially the cut-off frequency of the low-pass filter. Measurements with high signal quality were not possible for back-pressures lower than 0.5 MPa.
Journal Article

Comparative Studies between CFD and Wind Tunnel Measurements of Cooling Performance and External Aerodynamics for a Heavy Truck

2014-09-30
2014-01-2443
Nowadays, much focus for vehicle manufacturers is directed towards improving the energy efficiency of their products. The aerodynamic drag constitutes one major part of the total driving resistance for a vehicle travelling at higher speeds. In fact, above approximately 80km/h the aerodynamic drag is the dominating resistance acting on a truck. Hence the importance of reducing this resistance is apparent. Cooling drag is one part of the total aerodynamic drag, which arises from air flowing through the heat exchangers, and the irregular under-hood area. When using Computational Fluid Dynamics (CFD) in the development process it is of great importance to ensure that the methods used are accurately capturing the physics of the flow. This paper deals with comparative studies between CFD and wind-tunnel tests. In this paper, two comparative studies are presented.
Journal Article

Parameter Estimation of a DOC from Engine Rig Experiments with a Discretized Catalyst Washcoat Model

2014-07-01
2014-01-9049
Parameter tuning was performed against data from a full scale engine rig with a Diesel Oxidation Catalysts (DOC). Several different catalyst configurations were used with varying Pt loading, washcoat thickness and volume. To illustrate the interplay between kinetics and mass transport, engine operating points were chosen with a wide variation in variables (inlet conditions) and both transient and stationary operation was used. A catalyst model was developed where the catalyst washcoat was discretized as tanks in series both radially and axially. Three different model configurations were used for parameter tuning, evaluating three different approaches to modeling of internal transport resistance. It was concluded that for a catalyst model with internal transport resistance the best fit could be achieved if some parameters affecting the internal mass transport were tuned in addition to the kinetic parameters.
Journal Article

A Compact Silencer for the Control of Compressor Noise

2014-06-30
2014-01-2060
Current trends for IC-engines are driving the development of more efficient engines with higher specific power. This is true for both light and heavy duty vehicles and has led to an increased use of super-charging. The super-charging can be both in the form of a single or multi-stage turbo-charger driven by exhaust gases, or via a directly driven compressor. In both cases a possible noise problem can be a strong Blade Passing Frequency (BPF) typically in the kHz range and above the plane wave range. In this paper a novel type of compact dissipative silencer developed especially to handle this type of problem is described and optimized. The silencer is based on a combination of a micro-perforated (MPP) tube backed by a locally reacting cavity. The combined impedance of micro-perforate and cavity is chosen to match the theoretical optimum known as the Cremer impedance at the mid-frequency in the frequency range of interest.
X