Refine Your Search

Topic

Search Results

Technical Paper

A Simulation Model for an Online Corrective Look-Ahead Road Profiling System (CLARPS) for Active Suspension Applications

2024-04-09
2024-01-2758
Online road profiling capability is required for automotive active suspension systems to be realized in a commercial landscape. The challenges that impede the realization of these systems include a profiler’s ability to maintain an optimal resolution of the oncoming road profile (spatial frequency). Shifting of the profile measurement frame of reference due to body motion disturbances experienced by the vehicle also negatively impacts profiling capability. This work details the early development of a corrective look-ahead road profiling system (CLARPS) and its control logic. The CLARPS components are introduced and additional focus will be given to the development of the angle generating function (AGF) and how it drives the ability of the system to optimize look-ahead viewing angles for the best spatial frequency resolution of a road profile. The CLARPS simulation environment is demonstrated with numerical comparison of simulated road profiles at varying vehicle speeds.
Technical Paper

Numerical Analysis of the Effect of an Idler Disk on Centrifugal Pump Performance

2021-04-06
2021-01-0687
Designing a centrifugal pump impeller comes with challenges due to multiple parameters that affect the pump efficiency. A high velocity gradient exists in the flow between the impeller shroud and sidewall of the pump casing due to one surface stationary and the other moving at a high velocity. The internal rotating flow in the impeller shroud-sidewall gap is a major problem that leads to a decrease in pump performance. This study presents a design modification of the gap between the impeller shroud and the pump casing sidewall using an idler disk located in between, which rotates freely during pump operation. In this paper, a numerical analysis was performed to investigate the idler disk's effect on the pump performance for different volumetric flow rate values and idler disk geometries. ANSYS-2019-R1 was used (FLUENT solver) to carry out the computational fluid dynamics (CFD) analysis for evaluating the performance of the baseline and modified designs in a centrifugal pump.
Technical Paper

Investigation of the Acoustic Surface Power on a Cooling Fan Using the Mesh Morpher Optimizer

2019-04-02
2019-01-0833
A cooling fan is an essential device of the engine cooling system which is used to remove the heat generated inside the engine from the system. An essential element for successful fan designs is to evaluate the pressure over the fan blade since it can generate annoying noices, which have a negative impact on the fan’s performance and on the environment. Reducing the acoustic surface power will assist in building improved designs that comply with standards and regulations in achieving a more quiet environment. The usage of computational fluid dynamics (CFD), with support of mesh morphing, can provide simulation study for optimizing the shape of a fan blade to reduce the aeroacoustic effects. The investigation process will assist in examining and analyzing the acoustic performance of the prototype, impact of different parameters, and make a solid judgement about the model performance for improvement and optimization.
Technical Paper

Using Computational Fluid Dynamics for the Design, Assessment and Optimization of an Aerodynamic Body Kit on a Newly Designed Formula SAE Collegiate Competition Vehicle

2019-04-02
2019-01-0642
Formula SAE Collegiate Competition teams now regularly integrate aerodynamic body kits with their vehicles which have significant benefits in producing downforce. This use of body kits (or aero packages) and the improvement to vehicle aerodynamics they provide, have resulted in these systems becoming a necessity for any team wishing to remain competitive in Formula SAE (FSAE). To address this the Lawrence Technological University (LTU) Formula SAE team incorporated an aerodynamic body kit into their 2018 vehicle. Using computational fluid dynamics (CFD) an aerodynamic analysis was performed comparing the efficacy of a car that did not have an aero package to a car that did. Two separate simulation programs were employed to effectively and accurately assess this change. By using both SolidWorks and SimScale software to generate data, the results of each were compared to assess the accuracy of each.
Technical Paper

Assessment of a Three-Semester Mechanical Engineering Capstone Design Sequence Based on the SAE Collegiate Design Series

2019-04-02
2019-01-1126
Mechanical engineering students at Lawrence Technological University complete a five-credit hour capstone project: either an SAE collegiate design series (CDS) vehicle or an industry-sponsored project (ISP). Students who select the SAE CDS option enroll in a three-semester, three-course sequence. Each team of seniors designs, builds, and competes with their vehicle at one of the SAE CDS events. Three years after implementing major changes to the course structure and content, the three-semester capstone design sequence is revisited. Finalized learning objectives are presented and the sequence is assessed with a mix of direct, indirect, and anecdotal assessment. Student performance, as measured directly with design reports, milestones, and project completion, is good. Of the five Lawrence Tech CDS teams, only one has failed to be ready for competition since the changes were implemented.
Technical Paper

Subtractive/Additive Rapid Prototyping of a Curve Spacer for Centrifugal Pump Impeller: Design, Manufacturing, and Simulation Analysis

2019-04-02
2019-01-0506
This paper presents methods of rapid prototyping design and manufacturing used in the development of a centrifugal pump impeller with curved spacer (CS). In this research subtractive and additive rapid manufacturing methods were applied to create complex curved spacer profiles for testing as part of geometry optimization process for a high speed and high flow rate centrifugal pump impeller. Seven models for the curved spacer were designed and each model was integrated with the bare impeller separately for simulation analysis. One design was selected for manufacturing with applying subtractive and additive processes. In subtractive manufacturing method, the raw material was removed from a solid shaft by a cutting process under digital control from a computer file. The complexity of the modified impeller spacer profiles required the use of expensive CNC machining with five axis capability.
Technical Paper

A Numerical Study of the Effect of Longitudinal Vortex Generators on Heat Transfer Enhancement and Pressure Drop in a Rectangular Channel

2018-04-03
2018-01-0782
Longitudinal vortex generation is a common technique for enhancing heat transfer performance. It can be achieved by employing small flow manipulators, known as vortex generators (VGs), which are placed on the heat-transfer surface. The vortex generators can generate longitudinal vortices, which strongly disturb the flow structure, and have a significant influence on the velocity and temperature distributions, causing improved thermal transport. In this work, numerical simulations are conducted for a horizontal rectangular channel with and without a pair of longitudinal vortex generators. The vortex generators are fitted vertically on the bottom surface of the channel. The Computational Fluid Dynamics (CFD) analysis aims to acquire a better understanding of the flow structure and heat transfer mechanisms induced by longitudinal vortex generation. The simulation is performed using ANSYS Fluent, and three flow inlet velocities are considered: 1.38 m/s, 1.18 m/s, 0.98 m/s.
Technical Paper

An Application of Digital Image Correlation (DIC) Method in Large-Scale I-Beams Bending Test

2018-04-03
2018-01-1218
AASHTO I-Beam is a standard structural concrete part for bridge sections. The flexural performance of an AASHTO I-Beam is critical for bridge design. This paper presents an application of Digital Image Correlation (DIC) Method in full-scale AASHTO I-Beam flexural performance study. A full-scale AASHTO I-Beam pre-stressed with steel strands is tested by three-point bending method. The full-scale AASHTO I-Beam is first loaded from 0 kips to 100 kips and is then released from 100 kips to 0 kips. A dual-camera 3D Digital Image Correlation (DIC) system is used to measure the deflection and strain distribution during the testing. From the DIC results, the micro-crack generation progress during the loading progress can be observed clearly from the measured DIC strain map. To enable such a large-scale DIC measurement, the used DIC setup is optimized in terms of the optical imaging system and speckle pattern size.
Technical Paper

Experimental Investigation on the Influence of Pressure Wheel Design on Heat Dissipation for a Laser Robotic End of Arm Tooling

2018-04-03
2018-01-1235
The initiative of this paper is focused on improving the heat dissipation from the pressure wheel of a laser welding assembly in order to achieve a longer period of use. The work examines the effects of different geometrical designs on the thermal performance of pressure wheel assembly during a period of cooling time. Three disc designs were manufactured for testing: Design 1 – a plain wheel, Design 2 – a pierced wheel, and Design 3 – a wheel with ventilating vanes. All of the wheels were made of carbon steel. The transient thermal reaction were compared. The experimental results indicate that the ventilated wheel cools down faster with the convection in the ventilated channels, while the solid plain wheel continues to possess higher temperatures. A comparison among the three different designs indicates that the Design 3 has the best cooling performance.
Technical Paper

Optimizing the Rear Fascia Cutline Based On Investigating Deviation Sources of the Body Panel Fit and Finish

2017-03-28
2017-01-1600
A vehicle’s exterior fit and finish, in general, is the first system to attract customers. Automotive exterior engineers were motivated in the past few years to increase their focus on how to optimize the vehicle’s exterior panels split lines quality and how to minimize variation in fit and finish addressing customer and market required quality standards. The design engineering’s focus is to control the deviation from nominal build objective and minimize it. The fitting process follows an optimization model with the exterior panel’s location and orientation factors as independent variables. This research focuses on addressing the source of variation “contributed factors” that will impact the quality of the fit and finish. These critical factors could be resulted from the design process, product process, or an assembly process. An empirical analysis will be used to minimize the fit and finish deviation.
Technical Paper

Enhanced Process to Improve Supplier’s Quality and Reduce Warranty

2017-03-28
2017-01-1604
The objective of this research is to develop a component based enhanced production process after End of Line (EOL) testing. This process will add more quality validation evaluations, but will not require any disassembling of the parts or damage to them. It will help the suppliers to avoid scrap and rework parts as well as General Motors (GM) to reduce warranty and recalls. An Enhanced Production Process was implemented in March, 2016 at a supplier in Mexico. The Enhanced Audit Station implementation is to ensure that the supplier is satisfying the Production Part Approval Process (PPAP) requirements. The most important four components are: Touch Appearance Lighting and Color (TALC), Appearance Approval Report (AAR), Dimensional Checks, and Function Testing. Through statistics, a pilot study was conducted to correlate the selected variables to reduce warranty.
Technical Paper

Investigation of the Effect of Vortex Generation on Flow Structure and Heat Transfer Enhancement using Particle Image Velocimetry (PIV)

2017-03-28
2017-01-1609
In this experimental work, a flow field test system embedded with different vortex generators was installed to investigate the impact of vortex generation on heat transfer of air flow in a horizontal channel, and the flow structure was evaluated using a particle image velocimetry (PIV) system. Three different configurations of vortex generators were fitted vertically on a flat plate, at attack angles of 15o, 30o, and 45o, and tested at four different incoming air velocities. An axial fan was used to supply the flow of air through the test section. The effects of Reynolds number, attack angle, and the shape of vortex generators were examined in this work. The experimental results showed that, the presence of vortex generators had considerable effect on temperature distribution, pressure drop, and heat transfer augmentation in the channel flow.
Technical Paper

Reducing the Acoustic Surface Power of a Cooling Fan Using the Mesh Morpher Optimizer

2017-03-28
2017-01-1610
Cooling fans have many applications in industrial and electronic fields that remove heat away from the system. The process of designing a new cooling fan with optimal performance and reduced acoustic sources can be fairly lengthy and expensive. The use of CFD with support of mesh morphing, along with the development of optimization techniques, can improve the acoustic’s performance of the fan model. This paper presents a new promising method which will support the design process of a new cooling fan with improved performance and less acoustic surface power generation. The CFD analysis is focused on reducing the acoustic surface power of a given cooling fan’s blade using the surface dipole acoustic power as the objective function, which leads to an optimized prototype design for a better performance. The Mesh Morpher Optimizer (MMO) in ANSYS Fluent is used in combination with a Simplex model of the broadband acoustic modeling.
Technical Paper

Experimental Investigation of the Impact of Nanofluids on Heat Transfer Performance of a Motorcycle Radiator

2017-03-28
2017-01-1611
In the present work, the effect of various nanofluids on automotive engine cooling was experimentally studied. Al2O3, TiC, SiC, MWNT (multi-walled nanotube), and SiO2 nanoparticles with average diameter ranging between 1 and 100 nm were mixed with distilled water to form nanofluids. An ultrasonic generator was used to generate uniform particle dispersion in the fluid. A compatibility test was carried out on all nanofluids and it was found that TiC, MWNT, and Si3N4 nanoparticles settled and separated from the fluid within 3 hours after preparation. The engine cooling performance testing setup consisted of an Aprilia SXV 450 engine, the nanofluid cooling loop, a radiator, a fan, etc. Thermocouples and resistance temperature detectors (RTD’s) were attached to the inlet and outlet of the radiator hose to monitor the temperature changes taking place in the cooling system. A flowmeter was attached to the inlet hose of the radiator to monitor the coolant flow rate.
Technical Paper

Optimization of Modified Car Body Using Mesh Morphing Techniques in CFD

2016-04-05
2016-01-0009
Today's strict fuel economy requirement produces the need for the cars to have really optimized shapes among other characteristics as optimized cooling packages, reduced weight, to name a few. With the advances in automotive technology, tight global oil resources, lightweight automotive design process becomes a problem deserving important consideration. It is not however always clear how to modify the shape of the exterior of a car in order to minimize its aerodynamic resistance. Air motion is complex and operates differently at different weather conditions. Air motion around a vehicle has been studied quite exhaustively, but due to immense complex nature of air flow, which differs with different velocity, the nature of air, direction of flow et cetera, there is no complete study of aerodynamic analysis for a car. Something always can be done to further optimize the air flow around a car body.
Technical Paper

A Passive Solution to Differential Transient Cooling Issues Using Phase Change Materials

2016-04-05
2016-01-0008
Thermal management systems (TMS) of armored ground vehicle designs are often incapable of sustained heat rejection during high tractive effort conditions and ambient conditions. During these conditions, which mainly consist of high torque low speed operations, gear oil temperatures can rise over the allowable 275°F limit in less than twenty minutes. This work outlines an approach to temporarily store excess heat generated by the differential during high tractive effort situations through the use of a passive Phase Change Material (PCM) retrofit thereby extending the operating time, reducing temperature transients, and limiting overheating. A numerical heat transfer model has been developed based on a conceptual vehicle differential TMS. The model predicts the differential fluid temperature response with and without a PCM retrofit. The developed model captures the physics of the phase change processes to predict the transient heat absorption and rejection processes.
Technical Paper

A Study of the Dynamics of the Rolling Element and its Effect on Outer Race Creep

2016-04-05
2016-01-0011
Bearings are a major component in any rotating system. With continually increasing speeds, bearing failure modes take new unconventional forms that often are not understood. In high speed applications, rolling element forces and gyroscopic moments can be significantly high compared to the applied forces acting on a bearing. Such moments create a “driving” torque causing outer race to creep. In this paper a mathematical model for the dynamics of a rolling element in a high speed bearing is derived. Preload values counterbalancing the torque driving the outer race to rotate can be predicted from this model. An attempt to experimentally measure this torque using a specially designed apparatus with integrated strain gauge torque sensor is also described. Both model and experimental measurements are aimed at understanding, and therefore preventing bearing failures due to outer race (creep) rotations.
Technical Paper

Estimation of Elastic-Plastic Behavior at Notches under Uniaxial Cyclic Loading

2015-04-14
2015-01-0554
An accurate prediction of elasto-plastic cyclic deformation becomes extremely important in design optimization. It also leads to more accurate fatigue life prediction and hence weight savings. In paper presents a two-stage notch root prediction method. This is based on a correction expression to Neuber's rule notch strain amplitude as the first stage, and a linear interpolation scheme as the second stage. The accuracy of this method is assessed by comparing the predicted results with the results obtained from elasto-plastic finite element analysis. Various types of steels with different yield strengths were used in this study. Notch deformation behavior under cyclic variable amplitude loading conditions was monitored for a double notched flat plate and a circumference notched round bar to cover plain stress and plain strain conditions. Elastic as well as elasto-plastic finite element analyses are performed.
Technical Paper

Fatigue Life Improvement through the “NOVA” Process

2013-04-08
2013-01-1400
The experimental methods focused on utilizing the newly developed NOVA induction heating and hardening manufacturing process as an adapted method to produce high performance engine valve springs. A detailed testing plan was used to evaluate the expected and theorized possibility for fatigue life enhancement. An industry standard statistical analysis method and tools were employed to objectively substantiate the findings. Fatigue cycle testing using NOVA induction-hardened racing valve springs made of ultra-high tensile material were compared to data for springs with traditional heat treatment and those with standard processing. The results were displayed using Wöhler and modified Haigh fatigue life diagrams. The final analysis suggests that NOVA processed springs have a seemingly slight, yet significant benefit in fatigue life of 5 - 7% over springs processed through a competing method.
Technical Paper

Simulation and Approximation are Effective Tools for Products Development

2010-04-12
2010-01-0483
To stay competitive, new products require faster development time at low cost and good quality. Defense as well as commercial industries are forced to use analytical tools to stay competitive in a tough market. The use of simulation tools and approximation techniques in evaluating product performance during the early stages of the product development has a major impart on the product development efficiency, effectiveness, and lead time. Building physical prototypes of complex systems is expensive and it is difficult and time consuming to develop them. It is extremely beneficial to know as much as possible about the product performance and to optimize its dynamic characteristics before the first physical prototype is built.
X