Refine Your Search

Topic

Search Results

Viewing 1 to 17 of 17
Technical Paper

Analyses of the Integration of Carbon Dioxide Removal Assembly, Compressor, Accumulator and Sabatier Carbon Dioxide Reduction Assembly

2004-07-19
2004-01-2496
An analysis model has been developed for analyzing/optimizing the integration of a carbon dioxide removal assembly (CDRA), CO2 compressor, accumulator, and Sabatier CO2 reduction assembly. The integrated model can be used in optimizing compressor sizes, compressor operation logic, water generation from Sabatier, utilization of CO2 from crew metabolic output, and utilization of H2 from oxygen generation assembly. Tests to validate CO2 desorption, recovery, and compression had been conducted in 2002-2003 using CDRA/Simulation compressor set-up at NASA Marshall Space Flight Center (MSFC). An analysis of test data has validated CO2 desorption rate profile, CO2 compressor performance, CO2 recovery and CO2 vacuum vent in the CDRA model. Analysis / optimization of the compressor size and the compressor operation logic for an integrated closed air revitalization system is currently being conducted
Technical Paper

A Mission Statement for Space Architecture

2003-07-07
2003-01-2431
In an effort to define and advance the new discipline of Space Architecture, the AIAA technical subcommittee on Aerospace Architecture organized a Space Architecture Workshop that took place during the World Space Congress 2002 in Houston, Texas. One of the results of this workshop is a “Mission Statement for Space Architecture” that addresses the following core issues in a concise manner: definition, motivation, utility, required knowledge, and related disciplines. The workshop also addressed the typology and principles of space architecture, as well as basic philosophical guidelines for practitioners of this discipline. The mission statement, which was unanimously adopted by the workshop participants, reads as follows ([1], [2], [3]): “Space Architecture is the theory and practice of designing and building inhabited environments in outer space, responding to the deep human drive to explore and occupy new places.
Technical Paper

The AMS-02 Thermal Control System Design

2003-07-07
2003-01-2585
This paper reports on the Thermal Control System (TCS) of the AMS-02 (Alpha Magnetic Spectrometer). AMS-02 will be installed on the International Space Station (ISS) Starboard segment of the Truss in 2005, where it will acquire data for at least three years. The AMS-02 payload has a mass of about 6700 kg, a power budget of 2kW and consists of 5 different instruments, with their associated electronic equipment. Analytical integration of the AMS-02 thermal mathematical model is described in the paper, together with the main thermal design features. Stringent temperature stability requirements have been satisfied, providing a stable thermal environment that allows for easier calibration of the detectors. The overall thermal design uses a combination of standard and innovative concepts to fit specific instruments needs.
Technical Paper

International Space Station (ISS) Automated Safing Responses to Fire Emergencies

2003-07-07
2003-01-2595
Environmental Control and Life Support (ECLS) functionality aboard the International Space Station (ISS) includes responses to emergency conditions. The ISS requirements define three types of emergencies: fire, rapid depressurization, and hazardous or toxic atmosphere. The ISS has automatic integrated vehicle responses to each of these emergencies. These automated responses are designed to aid the crew in their response actions during the emergencies. This paper focuses on the ISS response to fire emergencies. It includes the integrated ISS automatic vehicle response and crew actions for fire. Philosophies covered include fire detection, fire response, and post-fire atmosphere recovery. Current responses and crew actions are discussed for the existing vehicle configuration on-orbit. This includes modules in the assembly sequence up to and including the Docking Compartment (DC1). Possible future improvements to the fire emergency responses are also described.
Technical Paper

Development of a Temperature-Swing Adsorption Compressor for Carbon Dioxide

2003-07-07
2003-01-2627
A closed-loop air revitalization system requires continuous removal of CO2 from the breathing air and an oxygen recovery system to recover oxygen from the waste CO2. Production of oxygen from CO2 is typically achieved by reacting CO2 with hydrogen in a reduction unit such as a Sabatier reactor. The air revitalization system of International Space Station (ISS) currently operates on an open loop mode where CO2 is being vented into the space vacuum due to lack of a Sabatier Reactor. A compressor and a storage device are required to interface the Carbon Dioxide Removal Assembly (CDRA) and the Sabatier reactor. This compressor must acquire the low-pressure CO2 from CDRA and provide it at a high enough pressure to the Sabatier reactor. The compressor should ensure independent operations of CDRA and Sabatier reactor at all times, even when their operating schedules are not synchronized.
Technical Paper

Delivery of Servicing & Performance Checkout Equipment to the International Space Station Joint Airlock to Support Extravehicular Activity

2002-07-15
2002-01-2366
In July 2001, during Space Shuttle Flight 7A, the Joint Airlock was added to the International Space Station (ISS) and utilized in performing the first extravehicular activity (EVA) from the ISS. Unlike previous airlock designs built by the United States or Russia, the Joint Airlock provides the ISS with the unique capability for performing EVAs utilizing either U.S. or Russian spacesuits. This EVA capability is made possible by the use of U.S.- and Russian- manufactured hardware items referred to as Servicing and Performance Checkout Equipment (SPCE) located in both the Joint Airlock's Equipment and Crew Locks. This paper provides a description for each SPCE item along with a summary of the requirements and capabilities provided in support of EVA events from the ISS Joint Airlock.
Technical Paper

Immobilized Microbe Microgravity Water Processing System (IMMWPS) Flight Experiment Integrated Ground Test Program

2002-07-15
2002-01-2355
This paper provides an overview of the IMMWPS Integrated Ground Test Program, completed at the NASA Johnson Space Center (JSC) during October and November 2001. The JSC Crew and Thermal Systems Division (CTSD) has developed the IMMWPS orbital flight experiment to test the feasibility of a microbe-based water purifier for use in zero-gravity conditions. The IMMWPS design utilizes a Microbial Processor Assembly (MPA) inoculated with facultative anaerobes to convert organic contaminants in wastewater to carbon dioxide and biomass. The primary purpose of the ground test program was to verify functional operations and procedures. A secondary objective was to provide initial ground data for later comparison to on-orbit performance. This paper provides a description of the overall test program, including the test article hardware and the test sequence performed to simulate the anticipated space flight test program. In addition, a summary of significant results from the testing is provided.
Technical Paper

ISS ECLS System Analysis Software Tools - An Overview and Assessment

2002-07-15
2002-01-2343
There have been many software programs that have provided simulations for the performance and operation of the Environmental Control and Life Support Subsystems (ECLSS) in the International Space Station (ISS) and in the Space Shuttle. These programs have been applied for purposes in system analysis, flight analysis, and ECLSS studies. Flight and system analysis tasks are deemed important. Therefore, more manpower and resources added for such work is considered beneficial. System analysis covers design and trouble-shooting, the validation of Flight Rules, and the contingency analysis. During the engineering design phase, ECLSS modelers predict the performance and interaction of units in a process train. Simulation results can be useful in estimating equipment sizes and costs. This article has also used two examples to illustrate that many Flight Rules need to be validated using properly selected integrated programs.
Technical Paper

Thermal Analysis of Compressible CO2 Flow for PFE TeSS Nozzle of Fire Detection System

2002-07-15
2002-01-2347
A thermal analysis of the compressible carbon dioxide (CO2) flow for the Portable Fire Extinguisher (PFE) system has been performed. A SINDA/FLUINT model has been developed for this analysis. The model includes the PFE tank and the Temporary Sleep Station (TeSS) nozzle, and both have an initial temperature of 72 °F. In order to investigate the thermal effect on the nozzle due to discharging CO2, the PFE TeSS nozzle pipe has been divided into three segments. This model also includes heat transfer predictions for PFE tank inner and outer wall surfaces. The simulation results show that the CO2 discharge rates and component wall temperatures fall within the requirements for the PFE system. The simulation results also indicate that after 50 seconds, the remaining CO2 in the tank may be near the triple point (gas, liquid and solid) state and, therefore, restricts the flow.
Technical Paper

Updating the Tools Used to Estimate Space Radiation Exposures for Operations: Codes, Models, and Interfaces

2002-07-15
2002-01-2457
In order to estimate the exposure to a crew in space, there are three essential steps to be performed: first, the ambient radiation environment at the vehicle must be characterized; second, the mass distribution properties of the vehicle, including the crewmembers themselves must be developed, and third a model of the interactions of space radiations with matter must be employed in order to characterize the radiation field at the dose point of interest. The Space Radiation Analysis Group (SRAG) at the NASA, Johnson Space Center carries the primary responsibility for the operational radiation protection support function associated with manned space flight. In order to provide support during the various planning, execution, and analysis/recording phase activities associated with a given mission, tools have been developed to allow rapid, repeatable calculations of exposure on orbit.
Technical Paper

Analysis and Design of Crew Sleep Station for ISS

2002-07-15
2002-01-2303
This paper details the analysis and design of the Temporary Sleep Station (TeSS) environmental control system for International Space Station (ISS). The TeSS will provide crewmembers with a private and personal space, to accommodate sleeping, donning and doffing of clothing, personal communication and performance of recreational activities. The need for privacy to accommodate these activities requires adequate ventilation inside the TeSS. This study considers whether temperature, carbon dioxide, and humidity remain within crew comfort and safety levels for various expected operating scenarios. Evaluation of these scenarios required the use and integration of various simulation codes. An approach was adapted for this study, whereby results from a particular code were integrated with other codes when necessary.
Technical Paper

Incineration of Inedible Biomass in a Regenerative Life Support System - Update of Development Activities at ARC

2001-07-09
2001-01-2344
Of the many competing technologies for resource recovery from solid wastes for long duration manned missions such as a lunar or Mars base, incineration technology is one of the most promising and certainly the most well developed in a terrestrial sense. Various factors are involved in the design of an optimum fluidized bed incinerator for inedible biomass. The factors include variability of moisture in the biomass, the ash content, and the amount of fuel nitrogen in the biomass. The crop mixture in the waste will vary; consequently the nature of the waste, the nitrogen content, and the biomass heating values will vary as well. Variation in feed will result in variation in the amount of contaminants such as nitrogen oxides that are produced in the combustion part of the incinerator. The incinerator must be robust enough to handle this variability. Research at NASA Ames Research Center using the fluidized bed incinerator has yielded valuable data on system parameters and variables.
Technical Paper

BIO-Plex Thermal Control System Design

2001-07-09
2001-01-2324
Engineers at the Johnson Space Center (JSC) are using innovative strategies to design the TCS for the Bio-regenerative Planetary Life Support Systems Test Complex (BIO-Plex), a regenerative advanced life support system ground test bed. This paper provides a current description of the BIO-Plex TCS design, testing objectives, analyses, descriptions of the TCS test articles expected to be tested in the BIO-Plex, and forward work regarding TCS. The TCS has been divided into some subsystems identified as permanent “infrastructure” for the BIO-Plex and others that are “test articles” that may change from one test to the next. The infrastructure subsystems are the Heating, Ventilation and Air-Conditioning (HVAC), the Crew Chambers Internal Thermal Control Subsystem (CC ITCS), the Biomass Production Chamber Internal Thermal Control Subsystem (BPC ITCS), the Waste Heat Distribution Subsystem (WHDS) and the External Thermal Control Subsystem (ETCS).
Technical Paper

Thermal Analysis of Compressible Gaseous Nitrogen Flow of X-38 Pressure Control System for First Mission Phase

2001-07-09
2001-01-2433
A SINDA/FLUINT model was developed for performing the thermal analysis of the compressible gaseous nitrogen (GN2) flow of X-38 pressure control system (PCS). The purpose of this analysis is to predict the thermal performance of X-38 PCS for the first mission phase, and to ensure that the GN2 pressure in tank stays above 1000 psi and the GN2 temperature in tank stays above −65°F during a real mission phase. The model simulations of the X-38 PCS have been conducted with the flowrates of the first mission phase for different ambient and GN2 temperatures with/without heating the GN2 tank wall. The predicted results show that the GN2 pressures and temperatures fulfill the requirements and limitations of the X-38 pressure control system without heating the GN2 tank wall. The electrical heaters on the GN2 tank exterior may be eliminated.
Technical Paper

Optimization of Waste Derived Elemental Use to Meet Demands of Crop Production of Selected BIO-Plex Crops

2000-07-10
2000-01-2285
In this paper we have developed a unique approach to providing the elements required for crop production in a steady-state condition, which is essential for Space habitats. The approach takes into consideration human elemental requirements and crop requirements for healthy growth and develops a method for the calculation of the rates of nutrient uptake for the different elements for different crops. The uptake rates can be used to calculate the rate of nutrient supply required in the hydroponic solution. This approach ensures that crops produced will not have excessive levels of elements that may be harmful to humans. It also provides an opportunity to optimize the processes of crop production and waste processing through highly controlled feed rates.
Technical Paper

Automatic Thermal Control Through a LCVG for a Spacesuit

1999-07-12
1999-01-1970
Automatic thermal control (ATC) was investigated for implementation into a spacesuit to provide thermal neutrality to the astronaut through a range of activity levels. Two different control concepts were evaluated and compared for their ability to maintain subject thermal comfort. Six test subjects, who were involved in a series of three tests, walked on a treadmill following specific metabolic profiles while wearing the Mark III spacesuit in ambient environmental conditions. Results show that individual subject comfort was effectively provided by both algorithms over a broad range of metabolic activity. ATC appears to be highly effective in providing efficient, “hands-off” thermal regulation requiring minimal instrumentation. Final selection of an algorithm to be implemented in an advanced spacesuit system will require testing in dynamic thermal environments and consideration of technology for advancement in instrumentation and controller performance.
Technical Paper

Water Recovery of Reverse Osmosis Brine and Pretreated Urine with an Air Evaporation Subsystem

1999-07-12
1999-01-1992
This paper focuses on an Air Evaporation Subsystem component of the Water Recovery System being developed at the Johnson Space Center in the Crew and Thermal Systems Division. Specifically, the focus is on the design and testing of the next generation of Air Evaporation Subsystem Engineering Development Unit built after the Lunar-Mars Life Support Test Project Phase III 91day test. The primary objective of testing this next generation Air Evaporation Subsystem was to demonstrate its performance as a Reverse Osmosis brine treatment subsystem by looking at the condensate quality produced from Reverse Osmosis brine and the power required to process the Reverse Osmosis brine. The secondary objectives were to develop optimal operating conditions, to optimize the use of a consumable wick and to retain as much operational data as possible through instrumentation.
X