Refine Your Search

Topic

Search Results

Technical Paper

Moments of Power: Statistical Analysis of the Primary Energy Consumption of a Vehicle

2023-04-11
2023-01-0541
The energy consumption of a vehicle is typically determined either by testing or in simulation. While both approaches are valid, they only work for a specific drive cycle, they are time intensive, and they do not directly result in a closed-form relationship between key parameters and consumption. This paper presents an alternative approach that determines the consumption based on a simple analytical model of the vehicle and statistical parameters of the drive cycle, specifically the moments of the velocity. This results in a closed-form solution that can be used for analysis or synthesis. The drive cycle is quantified via its moments, specifically the average speed, the standard deviation of the speed as well as the higher order moments skewness, and the kurtosis. A mixed quadratic term is added to account for acceleration or aggressiveness, but it is noticeably distinct from the conventional metric of positive kinetic energy (PKE).
Technical Paper

Turbogenerator Transient Energy Recovery Model

2023-04-11
2023-01-0208
Significant exhaust enthalpy is wasted in gasoline turbocharged direct injection (GTDI) engines; even at moderate loads the WG (Wastegate) starts to open. This action is required to reduce EBP (Exhaust Back Pressure). Another factor is catalyst protection, placed downstream turbine. Lambda enrichment is used to perform this. However, the conventional turbine has a temperature drop across it when used for energy recovery. Catalyst performance is critical for emissions, therefore the only location for any additional device is downstream of it. This is a challenge for any additional energy recovery, but a smaller turbine is a design requirement, optimised to work at lower operating pressure ratios. A WAVE model of the 2.0L GTDI engine was adapted to include a TG (Turbogenerator) and TBV (Turbine Bypass Valve) with the TG in a mechanical turbocompounding configuration, calibrated with steady state dynamometer data to estimate drive cycle benefit.
Technical Paper

Analytical Rotordynamic Study of a High-Speed Gear Transmission System for Race Applications

2020-09-30
2020-01-1502
In motorsport power transmission systems, high-speed operation can be associated with significant rotordynamic effects. Changes in the natural frequencies of lateral (bending) vibrational modes as a function of spin speed are brought about by gyroscopic action linked to flexible shafts and mounted gear components. In the investigation of high-speed systems, it is important that these effects are included in the analysis in order to accurately predict the critical speeds encountered due to the action of the gear mesh and other sources of excitation. The rotordynamic behaviour of the system can interact with crucial physical parameters of the transmission, such as the stiffnesses of the gear mesh and rolling element-to-raceway contact in the bearings. In addition, the presence of the gear mesh acts to couple the lateral and torsional vibration modes of a dual-shaft transmission through which a torque flows.
Technical Paper

Prediction of Acoustic Emissions of Turbocharger Bearings

2020-09-30
2020-01-1504
Turbochargers are progressively used in modern automotive engines to enhance engine performance and reduce energy loss and adverse emissions. Use of turbochargers along with other modern technologies has enabled development of significantly downsized internal combustion engines. However, turbochargers are major sources of acoustic emissions in modern automobiles. Their acoustics has a distinctive signature, originating from fluid-structure interactions. The bearing systems of turbochargers also constitute an important noise source. In this case, the acoustic emissions can mainly be attributed to hydrodynamic pressure fluctuations of the lubricant film. The developed analytical model determines the lubricant pressure distribution in the floating journal bearings used mainly in the modern turbocharges. This allows for an estimation of acoustic emissions.
Technical Paper

Feasibility Study of Operating 2-Stroke Miller Cycles on a 4-Stroke Platform through Variable Valve Train

2015-09-01
2015-01-1974
A 2-stroke combustion cycle has higher power output densities compared to a 4-stroke cycle counterpart. The modern down-sized 4-stroke engine design can greatly benefit from this attribute of the 2-stroke cycle. By using appropriate variable valvetrain, boosting, and direct fuel injection systems, both cycles can be feasibly implemented on the same engine platform. In this research study, two valve strategies for achieving a two-stroke cycle in a four-stroke engine have been studied. The first strategy is based on balanced compression and expansion strokes, while the gas exchange is done through two different strokes. The second approach is a novel 2-stroke combustion strategy - here referred to as 2-stroke Miller - which maintains the expansion as achieved in a 4-stroke cycle but suppresses the gas exchange into the compression stroke.
Technical Paper

Unified Backwards Facing and Forwards Facing Simulation of a Hybrid Electric Vehicle using MATLAB Simscape

2015-04-14
2015-01-1215
This paper presents the implementation of a vehicle and powertrain model of the parallel hybrid electric vehicle which can be used for several purposes: as a model for estimating fuel consumption, as a model for estimating performance, and as a control model for the hybrid powertrain optimisation. The model is specified as a multi-domain physical model in MATLAB Simscape, which captures the key electrical, mechanical and thermal energy flows in the vehicles. By applying hand crafted boundary conditions, this model can be simulated either in the forwards or backwards direction, and it can easily be simplified as required to address specific control problems. Modelling in the forwards direction, the driver inputs are specified, and the vehicle response is the model output. In the backwards direction, the vehicle velocity as a function of time is the specified input, and the engine torque, and fuel consumption are the model outputs.
Technical Paper

Inlet Condition Dependency of Centrifugal Compressor Mapped Efficiency

2014-10-13
2014-01-2854
Modelling of turbochargers based on steady state operating maps for turbine and compressor rotors is widely recognized to have limitations arising from flow pulsations and heat transfer effects that are not well accounted for by interpolation and extrapolation from the mapped data. With implementation of low pressure exhaust gas recirculation systems and multi-stage boosting, the inlet conditions of centrifugal compressors vary more widely than traditional single stage compression systems. Understanding the impact of the inlet conditions on irreversibilities, and therefore efficiency complements existing works on pulse flow and heat transfer effects in informing the engine modelling community. This research experimentally explores the effect of inlet pressure and temperature on the total-total efficiency of a steady flow centrifugal compressor across a range of conditions in isolation of pulse flow effects and with negligible heat transfer.
Journal Article

Methodology for the Design of an Aerodynamic Package for a Formula SAE Vehicle

2014-04-01
2014-01-0596
Recent changes to the rules regarding aerodynamics within Formula SAE, combined with faster circuits at the European FSAE events, have made the implementation of aerodynamic devices, to add down-force, a more relevant topic. As with any race series it is essential that a detailed analysis is completed to establish the costs and benefits of including an aerodynamic package on the vehicle. The aim of the work reported here was to create a methodology that would fully evaluate all aspects of the package and conclude with an estimate of the likely gain in points at a typical FSAE event. The paper limits the analysis to a front and rear wing combination, but the approach taken can be applied to more complex aerodynamic packages.
Journal Article

Experimental Data for the Validation of Numerical Methods - SAE Reference Notchback Model

2014-04-01
2014-01-0590
The use of simulation tools by vehicle manufacturers to design, optimize and validate their vehicles is essential if they are to respond to the demands of their customers, to meet legislative requirements and deliver new vehicles ever more quickly. The use of such tools in the aerodynamics community is already widespread, but they remain some way from replacing physical testing completely. Further advances in simulation capabilities depend on the availability of high quality validation data so that simulation code developers can ensure that they are capturing the physics of the problems in all the important areas of the flow-field. This paper reports on an experimental program to generate such high quality validation data for a SAE 20 degree backlight angle notchback reference model.
Technical Paper

A Predictive Model of Pmax and IMEP for Intra-Cycle Control

2014-04-01
2014-01-1344
In order to identify predictive models for a diesel engine combustion process, combustion cylinder pressure together with other fuel path variables such as rail pressure, injector current and sleeve pressure of 1000 continuous cycles were sampled and collected at high resolution. Using these engine steady state test data, three types of modeling approach have been studied. The first is the Auto-Regressive-Moving-Average (ARMA) model which had limited prediction ability for both peak combustion pressure (Pmax) and Indicated Mean Effective Pressure (IMEP). By applying correlation analysis, proper inputs were found for a linear predictive model of Pmax and IMEP respectively. The prediction performance of this linear model is excellent with a 30% fit number for both Pmax and IMEP. Further nonlinear modeling work shows that even a nonlinear Neural Network (NN) model does not have improved prediction performance compared to the linear predictive model.
Journal Article

Optimal Charging of EVs in a Real Time Pricing Electricity Market

2013-04-08
2013-01-1445
The idea of grid friendly charging is to use electricity from the grid to charge batteries when electricity is available in surplus and cheap. There are several ways of achieving this, for example using droop control, using night time electricity tariffs, or using smart metering. The goal is twofold: to avoid putting additional load on the electricity grid and power generation, and to reduce the cost to the consumer. This paper looks at the saving potential when charging an electric car using real time tariffs provided by a smart meter, using the Ameren tariffs in Illinois as an example. If prices are known in advance (day-ahead pricing), the optimization only requires picking the cheapest time slots for charging the battery. Further savings can be made by using real time prices that are not known in advance, but the optimization problem then depends on price prediction models, and it becomes much more difficult to solve.
Technical Paper

Addressing the Heat Exchange Question for Thermo-Electric Generators

2013-04-08
2013-01-0550
The use of thermo-electric (TE) generation systems in internal combustion engines (ICEs) to reduce the carbon dioxide emission by harnessing the exhaust thermal energy is showing increasing promise. In addition, integration with after treatment devices is a development route for this technology that offers a great potential. Recent work on TE systems have shown that the overall efficiency of present TE generation systems are constrained by, the limitations of the conversion efficiency and operating temperatures of TE materials; fabrication quality, durability and thermal performance of the thermo-electric modules (TEMs); geometrical configuration and heat exchange efficiency of thermo-electric generator (TEG) and; conversion techniques of the TEG's electrical output to a form suitable for vehicle systems.
Technical Paper

Elastohydrodynamics of Hypoid Gears in Axle Whine Conditions

2012-06-13
2012-01-1538
This paper presents an investigation into Elastohydrodynamic (EHL) modeling of differential hypoid gears that can be used in coupling with Newtonian (or multibody) dynamics to study Noise, Vibration and Harshness (NVH) phenomena, such as axle whine. The latter is a noise of a tonal nature, emitted from differential axles, characterised by the gear meshing frequency and its multiples. It appears at a variety of operating conditions; during drive and coasting, high and low torque loading. Key design targets for differential hypoid gears are improved efficiency and reduced vibration, which depend critically on the formation of an EHL lubricant film. The stiffness and damping of the oil film and friction generated in the contact can have important effects and cannot be neglected when examining the NVH behaviour of hypoid gears.
Technical Paper

The Effect of Vehicle Cruising Speed on the Dynamics of Automotive Hypoid Gears

2012-06-13
2012-01-1543
The dynamics of automotive differentials have been studied extensively to improve their efficiency and additionally, in recent years, generated noise and vibration. Various mathematical models have been proposed to describe the contact/impact of gear teeth pairs. However, the influence of vehicular cruising speed on the resisting torque has not been considered in sufficient detail. This can lead to unrealistic predictions with regards to loss of contact of teeth pair, a phenomenon which leads to NVH issues. The current work presents a torsional model of a hypoid gear pair. The resisting torque is a function of the traction force and aerodynamic drag, whilst the vehicle is cruising at nominally constant speed. The pinion input torque is derived through assumed instantaneous equilibrium conditions. In this approach, realistic excitation capturing the vehicle's driving conditions is imposed on the dynamics of the hypoid gear pair.
Technical Paper

Thermodynamic Study on the Solubility of NaBH4 and NaBO2 in NaOH Solutions

2011-08-30
2011-01-1741
Extensive research has been performed for on-board hydrogen generation, such as pyrolysis of metal hydrides (e.g., LiH, MgH₂), hydrogen storages in adsorption materials (e.g., carbon nanotubes and graphites), compressed hydrogen tanks and the hydrolysis of chemical hydrides. Among these methods, the hydrolysis of NaBH₄ has attracted great attention due to the high stability of its alkaline solution and the relatively high energy density, with further advantages such as moderate temperature range (from -5°C to 100°C) requirement, non-flammable, no side reactions or other volatile products, high purity H₂ output. The H₂ energy density contained by the system is fully depend on the solubility of the complicated solution contains reactant, product and the solution stabilizer. In this work, an approach based on thermodynamic equilibrium was proposed to model the relationship between the solubility of an electrolyte and temperature, and the effect of another component on its solubility.
Technical Paper

Drive Rattle Elastodynamic Response of Manual Automotive Transmissions

2011-05-17
2011-01-1586
Modern automotive industry is driven by improved fuel efficiency, whilst simultaneously increasing output power and reducing size/weight of vehicle components. This trend has the drawback of inducing various Noise, Vibration and Harshness (NVH) concerns in the drivetrain, since fairly low energy excitation often suffices to excite natural modes of thin walled structures, such as the transmission bell housing. Transmission rattle is one of the many undesired NVH issues, originating from irregularities in engine torque output. The crankshaft speed fluctuations are transferred through the transmission input shaft. Transmission compactness also allows repetitive interaction of conjugate loose gear pairs. The engine fluctuations disturb the otherwise unintended, but orderly meshing of these loose gears. This often leads to radiation of a characteristic air-borne noise from the impact sites.
Technical Paper

Handling Performance of a Vehicle Equipped with an Actively Controlled Differential

2011-05-17
2011-01-1557
Vehicle handling is heavily influenced by the torque distribution to the driving wheels. This work presents a newly developed differential, designed to actively control the driving torque distribution to the wheels. The new device incorporates an electric machine, which can operate either as a motor or generator. A control unit monitors signals from various sources in the vehicle, such as steering angle, yaw acceleration and wheel rotational speed. Then, a control algorithm takes into account the steering angle rate and the vehicle speed in order to determine the suitable difference between output torque values. The handling improvement capabilities are evaluated by simulating in ADAMS/Car the driving behavior of a vehicle equipped with the new differential. The model that has been used to simulate vehicle handling is that of a Formula SAE type racing car.
Journal Article

Accurate and Continuous Fuel Flow Rate Measurement Prediction for Real Time Application

2011-04-12
2011-01-1303
One of the most critical challenges currently facing the diesel engine industry is how to improve fuel economy under emission regulations. Improvement in fuel economy can be achieved by precisely controlling Air/Fuel ratio and by monitoring fuel consumption in real time. Accurate and repeatable measurements of fuel rate play a critical role in successfully controlling air/fuel ratio and in monitoring fuel consumption. Volumetric and gravimetric measurements are well-known methods for measuring fuel consumption of internal combustion engines. However, these methods are not suitable for obtaining fuel flow rate data used in real-time control/measurement. In this paper, neural networks are used to solve the problem concerning discontinuous data of fuel flow rate measured by using an AVL 733 s fuel meter. The continuous parts of discontinuous fuel flow rate are used to train and validate a neural network, which can then be used to predict the discontinuous parts of the fuel flow rate.
Technical Paper

Turbo-Discharging: Predicted Improvements in Engine Fuel Economy and Performance

2011-04-12
2011-01-0371
The importance of new technologies to improve the performance and fuel economy of internal combustion engines is now widely recognized and is essential to achieve CO₂ emissions targets and energy security. Increased hybridization, combustion improvements, friction reduction and ancillary developments are all playing an important part in achieving these goals. Turbocharging technology is established in the diesel engine field and will become more prominent as gasoline engine downsizing is more widely introduced to achieve significant fuel economy improvements. The work presented here introduces, for the first time, a new technology that applies conventional turbomachinery hardware to depressurize the exhaust system of almost any internal combustion engine by novel routing of the exhaust gases. The exhaust stroke of the piston is exposed to this low pressure leading to reduced or even reversed pumping losses, offering ≻5% increased engine torque and up to 5% reduced fuel consumption.
X