Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Numerical Research on the Effects of Pre-Chamber Orifice Scheme on the Performance in a Large-Bore Natural Gas Engine

2023-10-31
2023-01-1631
Pre-chamber ignition is one of the advanced technologies to improve the combustion performance for lean combustion natural gas engine, which could achieve low NOx, simultaneously. The designing scheme of the orifices, which connects the pre-chamber and the main chamber, is the main challenge limiting the further improvement. In this work, the three-dimensional computational fluid dynamics calculation based on a four-stroke engine with 320 mm cylinder bore was conducted to investigate the effects of orifice structure on the combustion and NOx performance. The results show that the schemes with 7 and 9 orifices lead to the delayed high-temperature jets formation due to the asymmetrical airflow in the pre-chamber, which retards the ignition timing but enhances the combustion in the main chamber. The 6 orifices scheme leads to the insufficient distribution of the high-temperature jets, and the 10 orifices result in the serious interference between the adjacent high-temperature jets.
Technical Paper

A Study of Biodiesel and Biodiesel Petroleum Diesel Blends to Mitigate Filter Blocking

2023-09-29
2023-32-0131
There are many anthropogenic climate change mitigation strategies being adopted worldwide. One of these is the adoption of biodiesel FAME (Fatty Acid Methyl Ester), in transportation. The fuel has been widely promoted as replacement for petroleum diesel because of its potential benefits for life cycle greenhouse gas emissions, carbon dioxide reduction and particulate matter improvements. Presently biodiesel may be made from a wide variety of starting materials, including food waste and agricultural materials such as vegetable oils and greases. The number and variety of possible starting materials continues to increase. Though, there is a limiting factor in the use of FAME, and that is cold weather operability. The regional climate can often influence FAME adoption with resultant economic and environmental implications. Often this cold temperature operability manifests itself as in vehicle fuel filter blocking.
Technical Paper

Numerical Optimization of the Piston Bowl Geometry and Investigation of the Key Geometric Parameters for the Dual-Mode Dual-Fuel (DMDF) Concept under a Wide Load Range

2022-03-29
2022-01-0782
Focusing on the dual-mode dual-fuel (DMDF) combustion concept, a combined optimization of the piston bowl geometry with the fuel injection strategy was conducted at low, mid, and high loads. By coupling the KIVA-3V code with the enhanced genetic algorithm (GA), a total of 14 parameters including the piston bowl geometric parameters and the injection parameters were optimized with the objective of meeting Euro VI regulations while improving the fuel efficiency. The optimal piston bowl shape coupled with the corresponding injection strategy was summarized and integrated at various loads. Furthermore, the effects of the key geometric parameters were investigated in terms of organizing the in-cylinder flow, influencing the energy distribution, and affecting the emissions. The results indicate that the behavior of the DMDF combustion mode is further enhanced in the aspects of improving the fuel economy and controlling the emissions after the bowl geometry optimization.
Technical Paper

Combustion Visualization and Experimental Study on Multi-Point Micro-Flame Ignited (MFI) Hybrid Lean-Burn Combustion in 4-Stroke Gasoline Engines

2020-09-15
2020-01-2070
Lean-burn combustion is an effective method for increasing the thermal efficiency of gasoline engines fueled with stoichiometric fuel-air mixture, but leads to an unacceptable level of high cyclic variability before reaching ultra-low nitrogen oxide (NOx) emissions emitted from conventional gasoline engines. Multi-point micro-flame ignited (MFI) hybrid combustion was proposed to overcome this problem, and can be can be grouped into double-peak type, ramp type and trapezoid type with very low frequency of appearance. This research investigates the micro-flame ignition stages of double-peak type and ramp type MFI combustion captured by high speed photography. The results show that large flame is formed by the fast propagation of multi-point flame occurring in the central zone of the cylinder in the double-peak type. However, the multiple flame sites occur around the cylinder, and then gradually propagate and form a large flame accelerated by the independent small flame in the ramp type.
Technical Paper

Control of Ignition Timing and Combustion Phase by Means of Injection Strategy for Jet-Controlled Compression Ignition Mode in a Light Duty Diesel Engine

2020-04-14
2020-01-0555
Controllability of ignition timing and combustion phase by means of dual-fuel direct injection strategy in jet-controlled compression ignition mode were investigated in a light-duty prototype diesel engine. Blended fuel with lower reactivity was delivered in the early period of compression stroke to form the premixed charge, while diesel fuel which has higher reactivity was injected near TDC to trigger the ignition. The effects of several important injection parameters including pre-injection timing, jet-injection timing, pre- injection pressure and ratio of pre-injection in the total heat value of injected fuel were discussed. Numerical Simulation by using CFD software was also conducted under similar operating conditions. The experimental results indicate that the jet-injection timing shows robust controllability on the start of combustion under all the engine load conditions.
Technical Paper

Effect of Turbulence-Chemistry Interaction on Spray Combustion: A Large Eddy Simulation Study

2019-04-02
2019-01-0203
Although turbulence plays a critical role in engines operated within low temperature combustion (LTC) regime, its interaction with chemistry on auto-ignition at low-ambient-temperature and lean-oxygen conditions remains inadequately understood. Therefore, it is worthwhile taking turbulence-chemistry interaction (TCI) into consideration in LTC engine simulation by employing advanced combustion models. In the present study, large eddy simulation (LES) coupled with linear eddy model (LEM) is performed to simulate the ignition process in n-heptane spray under engine-relevant conditions, known as Spray H. With LES, more details about unsteady spray flame could be captured compared to Reynolds-averaged Navier-Stokes equations (RANS). With LEM approach, both scalar fluctuation and turbulent mixing on sub-grid level are captured, accounting for the TCI. A skeletal mechanism is adopted in this numerical simulation, including 41 species and 124 reactions.
Technical Paper

Numerical Investigation of the Potential of Late Intake Valve Closing (LIVC) Coupled with Double Diesel Direct-Injection Strategy for Meeting High Fuel Efficiency with Ultra-Low Emissions in a Heavy-Duty Reactivity Controlled Compression Ignition (RCCI) Engine at High Load

2019-04-02
2019-01-1166
The potential of diesel/gasoline RCCI combustion coupled with late intake valve closing (LIVC) and double direct injection of diesel for meeting high fuel efficiency with ultra-low emissions was investigated in this study. The study was aiming at high load operation in a heavy-duty diesel engine. Based on the reactivity stratification of RCCI combustion, the employment of double injection of diesel fuel provided concentration stratification of the high-reactivity fuel, which is to further realize effective control of the combustion process. Meanwhile, late intake valve closing (LIVC) strategy is introduced to control the maximum in-cylinder pressure and nitrogen oxides (NOx) emissions.
Technical Paper

Development of a Reduced Chemical Mechanism for Dimethyl Ether (DME) Using a Decoupling Methodology

2017-10-08
2017-01-2191
Dimethyl ether (DME) attracts increasing attentions in recent years, because it can reduce the carbon monoxide (CO), unburned hydrocarbon (HC), and soot emissions for engines as the transportation fuel or the fuel additive. In this paper, a reduced DME oxidation mechanism is developed using the decoupling methodology. The rate constants of the fuel-related reactions are optimized using the non-dominated sorting genetic algorithm II (NSGA-II) to reproduce the ignition delay times in shock tubes and major species concentrations in jet-stirred reactors (JSR) over low-to-high temperatures. In NSGA-II, the range of the rate constants was considered to ensure the reliability of the optimized mechanism. Moreover, an improved objective function was proposed to maintain the faithfulness of the optimized mechanism to the original reaction mechanism, and a new method was presented to determine the optimal solution from the Pareto front.
Technical Paper

Similarity Analysis of the Chemical Kinetic Mechanism on the Ignition Delay in Shock Tubes and Homogeneous Charge Compression Ignition (HCCI) Engines

2017-10-08
2017-01-2260
The chemical kinetic mechanism determines the ignition timing of homogeneous charge compression ignition (HCCI) engines. The correlation of the ignition delay in shock tubes and HCCI engines under different operating conditions was studied with a reduced mechanism of the primary reference fuel (PRF) composing of n-heptane and iso-octane. According to the similarity analysis of the sensitivity coefficient, the operating conditions which affect the similarity factor are recognized. The results indicate that, under the negative temperature coefficient (NTC) region of the ignition delay in shock tubes, the weight of each reaction on the ignition delay in shock tubes is similar to that in HCCI engines. The ignition delay time in HCCI engines is defined as the period from the time of start of heat release (SHR) with the HRR greater than zero to CA10. At the high equivalence ratios in shock tubes, the similarity factor at the low ambient temperatures is small.
Technical Paper

Control-Oriented Modeling of Soot Emissions in Gasoline Partially Premixed Combustion with Pilot Injection

2017-03-28
2017-01-0511
In this paper, a control-oriented soot model was developed for real-time soot prediction and combustion condition optimization in a gasoline Partially Premixed Combustion (PPC) Engine. PPC is a promising combustion concept that achieves high efficiency, low soot and NOx emissions simultaneously. However, soot emissions were found to be significantly increased with high EGR and pilot injection, therefore a predictive soot model is needed for PPC engine control. The sensitivity of soot emissions to injection events and late-cycle heat release was investigated on a multi-cylinder heavy duty gasoline PPC engine, which indicated main impact factors during soot formation and oxidation processes. The Hiroyasu empirical model was modified according to the sensitivity results, which indicated main influences during soot formation and oxidation processes. By introducing additional compensation factors, this model can be used to predict soot emissions under pilot injection.
Technical Paper

Effect of Acetone-Gasoline Blend Ratio on Combustion and Emissions Characteristics in a Spark-Ignition Engine

2017-03-28
2017-01-0870
Due to the increasing consumption of fossil fuels, alternative fuels in internal combustion engines have attracted a lot of attention in recent years. Ethanol is the most common alternative fuel used in spark ignition (SI) engines due to its advantages of biodegradability, positively impacting emissions reduction as well as octane number improvement. Meanwhile, acetone is well-known as one of the industrial waste solvents for synthetic fibers and most plastic materials. In comparison to ethanol, acetone has a number of more desirable properties for being a viable alternative fuel such as its higher energy density, heating value and volatility.
Technical Paper

Comparing the Exergy Destruction of Methanol and Gasoline in Reactivity Controlled Compression Ignition (RCCI) Engine

2017-03-28
2017-01-0758
Multi-dimensional models coupled with a reduced chemical mechanism were used to investigate the effect of fuel on exergy destruction fraction and sources in a reactivity controlled compression ignition (RCCI) engine. The exergy destruction due to chemical reaction (Deschem) makes the largest contribution to the total exergy destruction. Different from the obvious low temperature heat release (LTHR) behavior in gasoline/diesel RCCI, methanol has a negative effect on the LTHR of diesel, so the exergy destruction accumulation from LTHR to high temperature heat release (HTHR) can be avoided in methanol/diesel RCCI, contributing to the reduction of Deschem. Moreover, the combustion temperature in methanol/diesel RCCI is higher compared to gasoline/diesel RCCI, which is also beneficial to the lower exergy destruction fraction. Therefore, the exergy destruction of methanol/diesel RCCI is lower than that of gasoline/diesel RCCI at the same combustion phasing.
Technical Paper

Combustion Characteristics of Acetone, Butanol, and Ethanol (ABE) Blended with Diesel in a Compression-Ignition Engine

2016-04-05
2016-01-0884
Acetone-Butanol-Ethanol (ABE) is an intermediate product in the ABE fermentation process for producing bio-butanol. As an additive for diesel, it has been shown to improve spray evaporation, improve fuel atomization, enhance air-fuel mixing, and enhance combustion as a whole. The typical compositions of ABE are in a volumetric ratio of 3:6:1 or 6:3:1. From previous studies done in a constant volume chamber, it was observed that the presence of additional acetone in the blend caused advancement in the combustion phasing, but too much acetone content led to an increase in soot emission during combustion. The objective of this research was to investigate the combustion of these mixtures in a diesel engine. The experiments were conducted in an AVL 5402 single-cylinder diesel engine at different speeds and different loads to study component effects on the various engine conditions. The fuels tested in these experiments were D100, ABE(3:6:1)10, ABE(3:6:1)20, ABE(6:3:1)10, and ABE(6:3:1)20.
Technical Paper

An Experimental Study of the Combustion, Performance and Emission Characteristics of a CI Engine under Diesel-1-Butanol/CNG Dual Fuel Operation Mode

2016-04-05
2016-01-0788
In order to comply with the stringent emission regulations, many researchers have been focusing on diesel-compressed natural gas (CNG) dual fuel operation in compression ignition (CI) engines. The diesel-CNG dual fuel operation mode has the potential to reduce both the soot and NOx emissions; however, the thermal efficiency is generally lower than that of the pure diesel operation, especially under the low and medium load conditions. The current experimental work investigates the potential of using diesel-1-butanol blends as the pilot fuel to improve the engine performance and emissions. Fuel blends of B0 (pure diesel), B10 (90% diesel and 10% 1-butanol by volume) and B20 (80% diesel and 20% 1-butanol) with 70% CNG substitution were compared based on an equivalent input energy at an engine speed of 1200 RPM. The results indicated that the diesel-1-butanol pilot fuel can lead to a more homogeneous mixture due to the longer ignition delay.
Technical Paper

Researches of Double-Layer Diverging Combustion System (DLDCS) in a DI Diesel Engine

2015-09-01
2015-01-1833
The new DI diesel engine combustion system named Double-Layer Diverging Combustion System (DLDCS) results in a better Brake Specific Fuel Consumption (BSFC) and lower exhaust emissions. The previous results of numerical simulation and bench test of a single cylinder DI diesel engine showed that more homogeneous fuel distribution, better BSFC and lower emission level were obtained by employing this combustion system. In this research, further numerical simulation are employed to seek the best injection advance angle and investigate the influence of different volume fraction and type lines of upper layer with AVL Fire.
Technical Paper

Large Eddy Simulation of Liquid Fuel Spray and Combustion with Gradually Varying Grid

2013-10-14
2013-01-2634
In this work, large eddy simulation (LES) with a K-equation subgrid turbulent kinetic energy model is implemented into the CFD code KIVA3V to study the features of liquid fuel spray and combustion using gradually varying grid in a constant volume chamber. The characteristic time-scale combustion model (CTC) incorporating a turbulent timescale is adopted to predict the combustion process and the SHELL auto-ignition model is used to predict auto-ignition. Combustion is also simulated using Parallel Detailed Chemistry with Lu's n-heptane reduced mechanism (58 species), which has been added into the KIVA3V-LES code. The computational results are compared with Sandia experimental data for non-reacting and reacting cases. As a result, LES can capture the complex structure of the spray and temperature distribution as well as the trend of ignition delay and flame lift-off length variations. Better results are obtained using the Parallel Detailed Chemistry than the CTC model.
Technical Paper

Injection of Fuel at High Pressure Conditions: LES Study

2011-09-11
2011-24-0041
This paper presents a large eddy simulation study of the liquid spray mixing with hot ambient gas in a constant volume vessel under engine-like conditions with the injection pressure of 1500 bar, ambient density 22.8 kg/m₃, ambient temperature of 900 K and an injector nozzle of 0.09 mm. The simulation results are compared with the experiments carried out by Pickett et al., under similar conditions. Under modern direct injection diesel engine conditions, it has been argued that the liquid core region is small and the droplets after atomization are fine so that the process of spray evaporation and mixing with the air is controlled by the heat and mass transfer between the ambient hot gas and central fuel flow. To examine this hypothesis a simple spray breakup model is tested in the present LES simulation. The simulations are performed using an open source compressible flow solver, in OpenFOAM.
Technical Paper

Influences of subgrid turbulent kinetic energy and turbulent dispersion on the characteristics of fuel spray

2011-08-30
2011-01-1839
A large eddy simulation approach and different breakup models are used to analyze fuel injection and atomization processes in a constant volume combustion bomb. The study is focused on the influences of the subgrid turbulent kinetic energy, especially the source term induced by the fuel spray, on the droplet movement and spray characteristics. Furthermore, the influence of different subgrid scale (SGS) models, including the constant coefficient and dynamic Smagorinsky models, WALE model and the K-equation turbulent energy transport model, on fuel sprays and the turbulent dispersion of droplets are examined. Factors affecting the fuel spray are discussed based on numerical computations for various operating conditions and are compared with experimental data.
Journal Article

UHC and CO Emissions Sources from a Light-Duty Diesel Engine Undergoing Dilution-Controlled Low-Temperature Combustion

2009-09-13
2009-24-0043
Unburned hydrocarbon (UHC) and carbon monoxide (CO) emission sources are examined in an optical, light-duty diesel engine operating under low load and engine speed, while employing a highly dilute, partially premixed low-temperature combustion (LTC) strategy. The impact of engine load and charge dilution on the UHC and CO sources is also evaluated. The progression of in-cylinder mixing and combustion processes is studied using ultraviolet planar laser-induced fluorescence (UV PLIF) to measure the spatial distributions of liquid- and vapor-phase hydrocarbon. A separate, deep-UV LIF technique is used to examine the clearance volume spatial distribution and composition of late-cycle UHC and CO. Homogeneous reactor simulations, utilizing detailed chemical kinetics and constrained by the measured cylinder pressure, are used to examine the impact of charge dilution and initial stoichiometry on oxidation behavior.
Technical Paper

A Novel Model for Computing the Trapping Efficiency and Residual Gas Fraction Validated with an Innovative Technique for Measuring the Trapping Efficiency

2008-09-09
2008-32-0003
The paper describes a novel method for calculating the residual gas fraction and the trapping efficiency in a 2 stroke engine. Assuming one dimensional compressible flow through the inlet and exhaust ports, the method estimates the instantaneous mass flowing in and out from the combustion chamber; later the residual gas fraction and trapping efficiency are estimated combining together the perfect displacement and perfect mixing scavenging models. It is assumed that when the intake port opens, the fresh mixture is pushing out the burned charge without any mixing and after a multiple of the time needed for the largest eddy to perform one rotation, the two gasses are instantly mixed up together and expelled. The result is a very simple algorithm that does not require much computational time and is able to estimate with high level of precision the trapping efficiency and the residual gas fraction in 2 stroke engines.
X