Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

FPGA Implementation of In-Cycle Closed-Loop Combustion Control Methods

2021-09-05
2021-24-0024
This paper investigates the FPGA resources for the implementation of in-cycle closed-loop combustion control algorithms. Closed-loop combustion control obtains feedback from fast in-cylinder pressure measurements for accurate and reliable information about the combustion progress, synchronized with the flywheel encoder. In-cycle combustion control requires accurate and fast computations for their real-time execution. A compromise between accuracy and computation complexity must be selected for an effective combustion control. The requirements on the signal processing (evaluation rate and digital resolution) are investigated. A common practice for the combustion supervision is to monitor the heat release rate. For its calculation, different methods for the computation of the cylinder volume and heat capacity ratio are compared. Combustion feedback requires of virtual sensors for the misfire detection, burnt fuel mass and pressure prediction.
Technical Paper

Stochastic Set-Point Optimization for In-Cycle Closed-Loop Combustion Control Operation

2021-04-06
2021-01-0531
The constrained indicated efficiency optimization of the set-point reference for in-cycle closed-loop combustion regulators is investigated in this article. Closed-loop combustion control is able to reduce the stochastic cyclic variations of the combustion by the adjustment of multiple-injections, a pilot and main injection in this work. The set-point is determined by the demand on engine load, burned pilot mass reference and combustion timing. Two strategies were investigated, the regulation of the start of combustion (SOC) and the center of combustion (CA50). The novel approach taken in this investigation consists of including the effect of the controlled variables on the combustion dispersion, instead of using mean-value models, and solve the stochastic optimization problem. A stochastic heat release model is developed for simulation and calibrated with extensive data from a Scania D13 six-cylinder engine. A Monte Carlo approach is taken for the simulations.
Journal Article

In-Cycle Closed-Loop Combustion Control for Pilot Misfire Compensation

2020-09-15
2020-01-2086
Pilot injections are normally used for the reduction of diesel engine emissions and combustion noise. Nonetheless, with a penalty on the indicated thermal efficiency. The cost is reduced by the minimization of the pilot mass, which on its counterpart increases the risk of pilot misfire. Pilot misfire can have a higher penalty on the indicated efficiency if it is not compensated adequately. This paper investigates how in-cycle closed-loop combustion control techniques can reduce the effects of pilot misfire events. By closed-loop combustion control, pilot misfire can be detected and counteracted in-cycle. Two injection strategies are investigated. The first is the control of the main injection, the second includes an additional second pilot injection. Based on the in-cycle misfire diagnose, two architectures are investigated. The first uses a cycle-to-cycle controller to set the main injection under each scenario.
X