Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

MFB50 On-Board Evaluation Based on a Zero-Dimensional ROHR Model

2011-04-12
2011-01-1420
In modern Diesel engine control strategies the guideline is to perform an efficient combustion control, mainly due to the increasing request to reduce pollutant emissions. Innovative control algorithms for optimal combustion positioning require the on-board evaluation of a large number of quantities. In order to perform closed-loop combustion control, one of the most important parameters to estimate on-board is MFB50, i.e. the angular position in which 50% of fuel mass burned within an engine cycle is reached. Furthermore, MFB50 allows determining the kind of combustion that takes place in the combustion chamber, therefore knowing such quantity is crucial for newly developed low temperature combustion applications (such as HCCI, HCLI, distinguished by very low NOx emissions). The aim of this work is to develop a virtual combustion sensor, that provides MFB50 estimated value as a function of quantities that can be monitored real-time by the Electronic Control Unit (ECU).
Technical Paper

Common Rail Multi-Jet Diesel Engine Combustion Development Investigation for MFB50 On-board Estimation

2010-10-25
2010-01-2211
Proper design of the combustion phase has always been crucial for Diesel engine control systems. Modern engine control strategies' growing complexity, mainly due to the increasing request to reduce pollutant emissions, requires on-board estimation of a growing number of quantities. In order to feedback a control strategy for optimal combustion positioning, one of the most important parameters to estimate on-board is the angular position where 50% of fuel mass burned over an engine cycle is reached (MFB50), because it provides important information about combustion effectiveness (a key factor, for example, in HCCI combustion control). In modern Diesel engines, injection patterns are designed with many degrees of freedom, such as the position and the duration of each injection, rail pressure or EGR rate. In this work a model of the combustion process has been developed in order to evaluate the energy release within the cylinder as a function of the injection parameters.
X