Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Chaos Theory Approach as Advanced Technique for GDI Spray Analysis

2017-03-28
2017-01-0839
The paper reports an innovative method of analysis based on an advanced statistical techniques applied to images captured by a high-speed camera that allows highlighting phenomena and anomalies hardly detectable by conventional optical diagnostic techniques. The images, previously elaborated by neural network tools in order for clearly identifying the contours, have been analyzed in their time evolution as pseudo-chaotic variables that may have internal periodic components. In addition to the Fourier analysis, tools as Lyapunov and Hurst exponents and average Kω permitted to detect the chaos level of the signals. The use of this technique has permitted to distinguish periodic oscillations from chaotic variations and to detect those parameters that actually determine the spray behavior.
Journal Article

Analysis of Knock Tendency in a Small VVA Turbocharged Engine Based on Integrated 1D-3D Simulations and Auto-Regressive Technique

2014-04-01
2014-01-1065
In the present paper, two different methodologies are adopted and critically integrated to analyze the knock behavior of a last generation small size spark ignition (SI) turbocharged VVA engine. Particularly, two full load operating points are selected, exhibiting relevant differences in terms of knock proximity. On one side, a knock investigation is carried out by means of an Auto-Regressive technique (AR model) to process experimental in-cylinder pressure signals. This mathematical procedure is used to estimate the statistical distribution of knocking cycles and provide a validation of the following 1D-3D knock investigations. On the other side, an integrated numerical approach is set up, based on the synergic use of 1D and 3D simulation tools. The 1D engine model is developed within the commercial software GT-Power™. It is used to provide time-varying boundary conditions (BCs) for the 3D code, Star-CD™.
Technical Paper

Time Predictability from System-level Design to Task Implementations in Automotive Applications

2010-04-12
2010-01-0450
Modern automotive embedded systems are characterized by timing constraints at different levels in the design hierarchy and flow. System-level functions like modern active-safety functions are characterized by end-to-end constraints that span several ECUs and buses. ECU-level functions, like fuel injection controls need to cope with stringent resource requirements, tight time constraints and event-driven computations with different execution modes. This paper introduces some of the models, the techniques and the tool integration methods developed in the context of the INTERESTED project to guarantee timing correctness at all levels in the flow. In addition, we outline the issues arising from the application of these techniques to a fuel injection case study.
X