Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

CAE Driven Light Weighting of Automotive Hood Using Multiple Loadcase Optimization

2022-03-29
2022-01-0788
In the automotive industry the requirement for low emissions has led to the demand for lightweight vehicle structures. Light weighting can be achieved through different iterative approaches but is usually time consuming. Current paper highlights deployment of the multi-loadcase optimization approach for light weighting. This work involves developing a process for multiple loadcase optimization for automotive hood. The main goal is to minimize the weight of a hood assembly by meeting strength and stiffness targets. The design variables considered in this study are thickness of the panels. Design constraints were set for stress and stiffness based on DVP (Design Verification Plan) requirement. Optimization workflow is setup in mode-frontier with design objective of minimizing weight of hood.
Technical Paper

Effect of Steel Wheel Disc Hat Profile and Vent Hole Shape on Fatigue Life in Cornering Test

2021-04-06
2021-01-0934
Automotive steel wheel is a critical component for human safety. For validating steel wheel various tests will be performed at component and vehicle level. Cornering test performed at vehicle level is one of the tests, where wheel will be validated for high cornering loads. Cornering test performed at vehicle level consists of three different events i.e., rotations of vehicle in track1, rotations of vehicle track 2 and rotations of vehicle in track3. As wheel will experience different loading in each of the events of cornering test, correlating the virtual Finite Element Analysis (FEA) with physical test is quite challenging. If in FEA we can predict the damage and life very near to the physical validation, we can create a safe wheel for high cornering loads without any test concerns. Vent hole shape and Hat depth are two important aspects in wheel disc design. Vent hole shape and size will influence the heat dissipation of braking.
Technical Paper

Body in white mass reduction through Optimization

2015-04-14
2015-01-1352
Body in White (BIW) is one of the major mass contributors in a full vehicle. Bending stiffness, torsional stiffness, durability, crashworthiness and modal characteristics are the basic performance parameters for which BIW is designed. Usually, to meet these parameters, a great deal of weight is added to BIW. Sensitivity analysis helps to identify the critical panels contributing to the performance while BIW optimization helps to reduce the overall mass of the BIW, without compromising on the basic performances. This paper highlights the optimization study carried out on the BIW of a Sports Utility Vehicle (SUV) for mass reduction. This optimization was carried out considering all the basic performance parameters. In the initial phase of BIW development, optimization helps to ensure minimum BIW weight rather than carrying out mass reduction post vehicle launch.
X