Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Experimental Emission Characteristics Study of Ethanol-Gasoline Fuel Blends on a GDI Engine with a Three-Way Catalyst

2024-01-16
2024-26-0155
Ethanol-gasoline blended fuels have been widely implemented in Indian markets followed by the Govt of India’s road map as ethanol reduces life-cycle greenhouse gas emissions and improves anti-knock performance. However, effects of Ethanol Blending on engine out emissions characteristics including particulates from gasoline direct injection (GDI) engine remains under development and investigation. In this study the effect of ethanol blended gasoline fuels with two blending rates 10% and 20% (v/v %) on catalyst conversion efficiencies and emissions on a 1.2 litre 3-cylinder turbo GDI engine is investigated. The addition of ethanol to gasoline fuel enhances the Octane rating (RON) of the blended fuels, oxygen content and changes Reid vapor pressure (RVP). The influence of lambda biasing, and lambda trim controller has been tested. The approach for calibration was adopted based on achieving the target pollutant conversion efficiencies.
Technical Paper

Engine out Particulate Emission Optimization with Multiple Injection Strategy for 3-Cylinder Turbo GDI E6d Engine

2021-09-22
2021-26-0070
With the increase in the number of automobiles on road, there is a very strong emphasis on reducing the air pollution which led to evolution of stringent emission norms. To meet these stringent emission norms, the ideal solution is to optimize the engine hardware and the combustion system to reduce the emission at source thereby reducing the dependency on exhaust after treatment system. Gasoline Direct Injection (GDI) engines are gaining popularity worldwide as they provide a balance between fun to drive and fuel efficiency. Controlling the particle emissions especially Particle Number (PN) is a challenge in GDI engines due to the nature of its combustion system. In this study, experiments were performed on a 1.2Litre 3-cylinder 250bar GDI engine to capture the effect of injection strategies on PN.
Technical Paper

Aggressive Catalyst Heating Strategy Using Advanced Mixture Formation and Combustion Timing Techniques in a GDI Engine

2021-09-22
2021-26-0185
Precise control over mixture formation withhigh fuel pressure and multiple injections allows Gasoline Direct Injection (GDI) engines to be operated satisfactorily at extreme conditions wherePort Fuel Injection (PFI) engines wouldnormally struggle due to combustion instability issues. Catalyst heating phase is one such important condition which is initiated after a cold engine start to improve the effectiveness of the three-way catalyst (TWC). For a given TWC specification, fast light-offof TWC is achieved in the catalyst heating phase by increasing the exhaust gas temperature with higher exhaust mass flow. The duration of this phase must be as short as possible, as it is a trade-off between achieving sufficient TWC light off performance and fuel efficiency.
X