Refine Your Search

Topic

Search Results

Viewing 1 to 11 of 11
Technical Paper

Customer Usage Profile based Luggage Compartment Development at Concept Phase

2021-10-01
2021-28-0153
The SAE J1100 based standard cargo volume index methods and predefined luggage objects are very specific to United States population. The European luggage volume calculation and standard luggage calculations are primarily based on DIN and ISO standards. Luggage volume declaration by manufacturers are based on any of these methods. The calculations are complicated and there is a possibility of declaring different values for similar luggage compartments. The major purchase decision of vehicle is based on its luggage capacity and current methods are very limited to make an intelligent decision by a customer. Market specific customer usage patterns for luggage requirements and protecting them in vehicle architecture upfront in concept stage is important to retain the market position and buying preference of customers. The usage patterns is collected from customer clinics and marketing inputs.
Technical Paper

Suspension Components Calculation at Concept Stage to Evaluate the Ride and Handling Characteristics

2021-09-22
2021-26-0082
Vehicle handing and ride are the critical attributes for customers while buying new passenger vehicle. Hence it is very important to design suspension which meets customer expectations. Often tuning of suspension parameters is very difficult at later stage like wheelbase, vehicle center of Gravity and other suspension parameters like roll center heights etc. A parametric mathematical model is built to study the effect of these parameters of vehicle handling and ride attributes at concept stage. These models are used to calculate the suspension ride rates, spring rates and Anti roll bar diameters for meeting target vehicle ride and handling performance. The model also calculates natural frequency of suspension and vehicle for understanding pitch and roll behaviours.
Technical Paper

Utilizing Weathering Effect to Understand Squeak Risk on Material Ageing

2021-09-22
2021-26-0280
Squeak and rattle concerns accounts for approximately 10% of overall vehicle Things Gone Wrong (TGW) and are major quality concern for automotive OEM’s. Objectionable door noises such as squeak and rattle are among the top 10 IQS concerns under any OEM nameplate. Customers perceive Squeak and rattle noises inside a cabin as a major negative indicator of vehicle build quality and durability. Door squeak and rattle issues not only affects customer satisfaction index, but also increase warranty cost to OEM significantly. Especially, issues related to door, irritate customers due to material incompatibilities. Squeaks are friction-induced noises generated by stick-slip phenomenon between interfacing surfaces. Several factors, such as material property, friction coefficient, relative velocity, temperature, and humidity, are involved in squeak noise causes.
Technical Paper

A Unique Methodology to Evaluate the Structural Robustness of a Dual-Mass Flywheel under Real-World Usage Conditions

2020-09-25
2020-28-0475
Dual mass flywheel (DMF) is an excellent solution to improve the noise, vibration and harshness (NVH) characteristic of any vehicle by isolating the driveline from the engine torsional vibrations. For the same reason, DMFs are widely used in high power-density diesel and gasoline engines. However, the real-world usage conditions pose a lot of challenges to the structural robustness of the DMF. In the present work, a new methodology is developed to evaluate the robustness of a DMF fitted in a compact sports utility vehicle (SUV) with rear-wheel drive architecture. The abuse conditions (mis-gear, sudden braking, etc) in the real-world usage could lead to a sudden engine stall leading to an abnormally high angular deceleration of the driveline components. The higher rate of deceleration coupled with the higher rotational moment of inertia of the systems might end up in introducing a significantly high impact torque on the DMF.
Technical Paper

Prediction of Tractor CG by Considering the Safety Devices at Concept Level

2020-09-25
2020-28-0476
Tractor weight transfer is the most common farm-related cause of fatalities nowadays. As in India it is getting mandatory for all safety devices across all HP ranges. Considering any changes in the weight from an attachment such as Rops, PTO device, tow hook and draw bar etc. can shift the center of gravity towards the weight. center of gravity is higher on a tractor because the tractor needs to be higher in order to complete operations over crops and rough terrain. Terrains, attachments, weights, and speeds can change the tractor’s resistance to turning over. This center of gravity placement disperses the weight so that 30 percent of the tractor’s weight is on the front axle and 70 percent is on the rear axle for two-wheel drive propelled tractors and it must remain within the tractor’s stability baseline for the tractor to remain in an upright position.
Technical Paper

A Comprehensive Study on the Challenges of Dual Mass Flywheel in Real-World Operating Conditions of the Indian Market

2020-04-14
2020-01-1014
The present work is focussed on the real-world challenges of a dual mass flywheel (DMF) equipped vehicle in the Indian market. DMFs are widely used to isolate the drivetrain from the high torsional vibrations induced by the engine. While DMFs can significantly improve noise, vibration and harshness (NVH) characteristics of a vehicle, there are multiple challenges experienced in real-world operating conditions when compared with the single mass flywheel (SMF). The present work explains the challenges of using a DMF in a high power-density diesel powertrain for a multi-purpose vehicle (MPV) application in the Indian market. Measurements on the flat-road operating conditions revealed that the DMF vehicle is very sensitive for launch behaviour and requires a higher clutch modulation. Vibration measurements at the driver’s seat confirm that the SMF vehicle could be launched more comfortably at the engine idle speed of 850 RPM.
Technical Paper

A Study on the Effect of Steering Input Frequency on Transient Lateral Dynamics of Four-Wheeled Passenger Vehicles

2019-01-09
2019-26-0070
Vehicle lateral dynamic response parameters such as yaw velocity, lateral acceleration, roll angle, etc. depend on the nature of steering input. Response parameters vary with the amplitude and frequency of steering input. This paper deals with developing insights into the effect of steering input frequency on transient handling dynamics. For the purpose two SUV segment vehicles with similar curb weight are considered. Vehicles are given pulse inputs of the amplitudes corresponding to 4 m/s2 steady state lateral acceleration and target speeds of 80 kmph and 100 kmph, as recommended in ISO 7401:2011. Steering inputs are executed using a Steering Robot (ABD SR30). Lateral transient dynamic response gains as well as natural frequencies of yaw are studied for 0-2 Hz input frequencies. Several insights are developed, adding to the understanding of transient lateral dynamics and its relationship with steering input.
Technical Paper

Methodology to Quantitatively Evaluate the Secondary Ride Characteristics of a Vehicle

2017-07-10
2017-28-1959
The Ride Comfort has always been an important attribute of a vehicle that gets trade-off with handling characteristics of a vehicle. However, to cater the growing customer requirements for better ride comfort in a vehicle without compromising on other attributes, evaluating and achieving optimal ride comfort has become a significant process in the vehicle development. In the current engineering capability and virtual engineering simulations, creating an accurate and real time model to predict ride comfort of a vehicle is a challenging task. The qualitative evaluation of ride attributes has always been the proven conventional method to finalize the requirements of a vehicle. However, quantitative evaluation of vehicle ride characteristics benefits in terms of target setting during vehicle development process and in robust validation of the final intended product against its specifications.
Technical Paper

Novel, Compact and Light Weight Plenum Assembly for Automobiles

2017-07-10
2017-28-1924
Plenum is the part located between the front windshield and the bonnet of an automobile . It is primarily used as an air inlet to the HVAC during fresh air mode operation. It’s secondary functions include water drainage, aesthetic cover to hide the gap between windshield to bonnet, concealing wiper motors and mechanisms etc. The plenum consists mainly two sub parts viz. upper plenum and lower plenum. Conventional plenum design which is found in majority of global OEMs employ a plastic upper plenum and a metal lower plenum which spans across the entire width of engine compartment. This conventional lower plenum is bulky, consumes more packaging space and has more weight. In this paper, we propose a novel design for the plenum lower to overcome above mentioned limitations of the conventional design. This novel design employs a dry and wet box concept for its working and is made up of complete plastic material.
Technical Paper

Optimizing OSRVM Package for Maximizing In-vehicle Visibility

2015-09-29
2015-01-2837
Overall in-vehicle visibility is considered as a key safety parameter essentially mandated due to the increasing traffic scenario as seen in developing countries. Driver side bottom corner visibility is one such parameter primarily defined by A-pillar bottom and outside rear-view mirror (OSRVM). While defining the OSRVM package requirements such as size, position and regulatory aspects, it is also vital to consider other influencing parameters such as position of pillars, waist-line height, and Instrument panel which affect the in-vehicle visibility. This study explains the various package considerations, methods to optimize OSRVM position, shape and housing design in order to maximize the in-vehicle visibility considering the road and traffic conditions. A detailed study on in-vehicle visibility impacted by OSRVM packaging explained and had been verified for the results.
Technical Paper

High Performance EGR Cooler Selection and its Fouling Behavior for a HSDI Diesel Engine

2015-01-14
2015-26-0087
Selection of EGR system is very complex for a particular engine application. The performance of the EGR system depends highly on the Cooler Heat Transfer Efficiency. Cooler effectiveness drops over a period of operation due to soot deposition, HC condensation, and fuel quality. This phenomenon is called as Cooler Fouling. Fouling cannot be avoided completely but the level of performance drop over time has to be studied and minimized. The minimum pressure drop and the highest efficiency in fouled condition is the target for selection of a cooler. In this study, various parameter combinations like tube shape and profile, tube length, number of tubes, tube diameter, and pitch of corrugations, which influence the cooler performance were tested. A better understanding of each of its effect on cooler effectiveness and fouling behavior was obtained. The tube shape was changed from rectangular to circular, also from smooth surface to corrugate.
X