Refine Your Search

Topic

Author

Search Results

Technical Paper

Reduction of Carbon Footprint Using Additive Inspired Design in Tractor Hydraulic Systems

2024-01-16
2024-26-0070
Tractor is primarily used for Haulage and agricultural applications due to this high tractive effort. A tractor usage has been increased in recent times for its wide range of implement applications. Considering environmental factors and sustainability, restrictions are set on the Tractor emissions. This brings new challenge in the Tractor industry to reduce the carbon footprint. Conventional casting process involves preparation of die & mold, material removal and machining in the final stage to get the desired final product. Alternatively Additive Manufacturing Process (AMP) helps in creation of lighter and stronger parts by adding material layer by layer. By saving the material, weight of the overall Tractor is reduced which helps in reducing carbon footprint. But the disadvantage of this process is the limited availability and high cost of AMP material and lack of infrastructure/skill set for operation handling.
Technical Paper

Regeneration Calibration for Optimum Range and Effective Brakes Performances in eSUV

2024-01-16
2024-26-0110
Regenerative braking is an effective approach for electric vehicles (EVs) to extend their driving range. To enhance the braking performances and regenerative energy, regenerative braking control strategy based on multi objective optimization is explained in this paper. This technical paper would be focusing on extracting optimum Range with effective brake performances without affecting drivability and performances in different drives modes. An extensive research study on public road driving patterns is done to understand the percentage utilization of brakes at various (low-mid-high) speeds as per the customer driving behavior. Multi-Objective optimization function with three vital factors is defined where output generated power, torque smoothness and current smoothness are selected as optimization objective to improve the driving range, braking comfort, and battery lifetime respectively.
Technical Paper

Structural Development and Improvement of SCR Assembly Design for Exhaust after Treatment System of a Construction Equipment off Highway Vehicle

2024-01-16
2024-26-0091
Construction equipment off highway vehicles are heavy industry vehicles that run on diesel engines. To meet the emission norms, these engines have the Exhaust After Treatment System (EATS) which includes two primary subassemblies, i.e., a Diesel Oxidation Catalyst (DOC) subassembly to reduce the HC and CO emissions and a Selective catalytic Reduction (SCR) subassembly to reduce NOx emissions. Because of the excessive vibrations in the engine and continuous heavy-duty usage of the Construction equipment, any failures in the EATS system leading to escape of exhaust gas is a statuary non-compliance. Hence, understanding the effect of engine vibrations and proposing a cost-effective solution is paramount in designing the EATS system including the SCR assembly. A field-testing failure of an SCR assembly has been taken in consideration for this study.
Technical Paper

Experimental Emission Characteristics Study of Ethanol-Gasoline Fuel Blends on a GDI Engine with a Three-Way Catalyst

2024-01-16
2024-26-0155
Ethanol-gasoline blended fuels have been widely implemented in Indian markets followed by the Govt of India’s road map as ethanol reduces life-cycle greenhouse gas emissions and improves anti-knock performance. However, effects of Ethanol Blending on engine out emissions characteristics including particulates from gasoline direct injection (GDI) engine remains under development and investigation. In this study the effect of ethanol blended gasoline fuels with two blending rates 10% and 20% (v/v %) on catalyst conversion efficiencies and emissions on a 1.2 litre 3-cylinder turbo GDI engine is investigated. The addition of ethanol to gasoline fuel enhances the Octane rating (RON) of the blended fuels, oxygen content and changes Reid vapor pressure (RVP). The influence of lambda biasing, and lambda trim controller has been tested. The approach for calibration was adopted based on achieving the target pollutant conversion efficiencies.
Technical Paper

After Treatment Sensors Positioning for BS6.2 Diesel Engine

2024-01-16
2024-26-0039
BS6.1 emission standards were implemented in India in 2020 followed by BS6.2 which added more controls on emission limits. For BS6.2 OBD (On Board Diagnostics) and RDE (Real Driving Emission) were added on to the existing BS6.1 emissions. Emission control changes usually need addition of new parts, calibration changes and durability requirements. For the current 1.5L, 3-cylinder diesel engine an pSCR (Passive Selective Catalytic Reduction) brick was added for control of NOx for meeting RDE. For meeting OBD requirements PM (Particulate Matter) and NOx sensors were added in the cold end pipe along with calibration changes to meet the BS6.2 norms. In this paper we will discuss on the design aspects of sensors and pSCR only. The sensor and pSCR positioning plays vital role in meeting the legislative requirements and to ensure the ease of assembly and durability of the parts.
Technical Paper

Engine Modelling with Smart Online DoE

2024-01-16
2024-26-0338
The implementation of TREM/CEV 5 emission norms on farm equipment will bring in cost pressure due to the need for exhaust after treatment systems. This cost increase needs to be reduced by bringing in more efficient and effective processes to shorten the development phase and to provide better fuel efficiencies. In this work ETAS ASCMO Online DoE with Constraint Modelling (ODCM) was applied to execute smart online DoE on a new common rail diesel engine with EGR, whose exact bounds of operation was not available. A Global test plan with ASCMO Static was created without much focus on detailed constraints of engine operation, other than the full load curve. The parameters which were selected were Speed, Torque, Rail Pressure, Main Timing, EGR Valve Position, Pilot Separation and Quantity and Post Quantity and Separation. For these parameters, the safe operating bounds were not available. This ASCMO Static test plan is automated and executed on engine test cell with ETAS INCAFlow.
Technical Paper

Light Weighting of Tractor Components Using Virtual Optimization Technique

2024-01-16
2024-26-0390
Usually conventional iterative methods of optimization will consume more time to optimize the given design. Mostly, it becomes very difficult if multiple loads are acting on the structure contradicting each other. CAE based optimization technique becomes more useful in such cases to optimize the given design and achieve weight reduction. Optimization methods offers guidance to expedite solutions, resulting in a substantial reduction in product development time. Nowadays, optimization became inevitable part among the virtual validation processes of design in industries. A wide range of optimization methods have been effectively employed in the design of tractor components, especially mounting brackets, chassis and skid housing for the development of off-road vehicle. Based on the design stage, various optimization techniques were followed i.e. Topology, size and shape. Depending upon the available analysis time & Design freedom, determines the type of optimization approach to be used.
Technical Paper

An Investigation on High Impact Torque of BEV and Driveshaft Robustness Improvements

2024-01-16
2024-26-0334
The inherent capacity of electric motors to generate substantial instant torque can lead to significant load reversals in electric vehicle driveshafts under specific road conditions and driving maneuvers, highlighting the need for targeted improvements in driveshaft design, particularly in optimizing joint sizing. This paper presents a systematic approach to investigate the root causes of a catastrophic driveshaft failure that occurred during specific vehicle tests on a road with multiple speed bumps, resulting in numerous high torque reversals. The objective was to enhance system robustness through changes in driveshaft design and the manufacturing process, coupled with a software calibration technique to reduce torque demands under such operating conditions. The process encompassed torque measurements at the vehicle level, failure replication on a test rig, and correlation with simulations.
Technical Paper

Aggressive Catalyst Heating Strategy Using Advanced Mixture Formation and Combustion Timing Techniques in a GDI Engine

2021-09-22
2021-26-0185
Precise control over mixture formation withhigh fuel pressure and multiple injections allows Gasoline Direct Injection (GDI) engines to be operated satisfactorily at extreme conditions wherePort Fuel Injection (PFI) engines wouldnormally struggle due to combustion instability issues. Catalyst heating phase is one such important condition which is initiated after a cold engine start to improve the effectiveness of the three-way catalyst (TWC). For a given TWC specification, fast light-offof TWC is achieved in the catalyst heating phase by increasing the exhaust gas temperature with higher exhaust mass flow. The duration of this phase must be as short as possible, as it is a trade-off between achieving sufficient TWC light off performance and fuel efficiency.
Technical Paper

Evaluation of Hardtop Roof Mounting Schemes for High Speed Performance and Noise

2021-04-06
2021-01-0292
Customer comfort has been at the core of any vehicle design. A segment of vehicle wherein the provision given for roof to be removed to enhance the customer experience. A similar vehicle is the subject matter for the evaluation here. The vehicle being off-roader, customer buying such vehicles are passionate about these lifestyle vehicle’s performance aspects. The roof components are plastic and are bolted with the BIW structure with sealing in place at the interface. The windshield angle being close to vertical, there is a tendency for flow separation at the front tip of roof, while vehicle driven at speed. This creates significant pressure difference across the roof surface, leading to vertical deformation of roof between the bolted mounts. In case the magnitude of deformations not controlled, the reduced sealing effectiveness lets air gushing in the cabin and make noise which can be audible to customer.
Technical Paper

BIW Multidisciplinary Design Optimization (MDO) with Equivalent Static Load Method - Quick MDO Methodology

2021-04-06
2021-01-0287
Multidisciplinary Design Optimization (MDO) of an automobile body structure is a challenging task as it involves multiple, often conflicting requirements of safety, durability & NVH. Conventionally MDO process requires running large number of design of experiments (DOE) to explore the full design space and to build response surface for optimization. As the safety simulations are highly nonlinear in nature, they typically require significant amount of computational time and resources. Hence the conventional MDO approach is too expensive if too many design variables are simultaneously considered. In this paper, an alternative approach using Equivalent Static Load (ESL) method has been suggested for MDO which is quicker & accurate. The basic idea of the Equivalent Static Load-Method (ESL) is to divide the original nonlinear dynamic optimization problem into an iterative linear optimization and nonlinear analysis process.
Technical Paper

Hybrid Optimization Methodology for Flexplate of Automatic Transmission

2020-04-14
2020-01-0916
For Automatic transmission application, crankshaft torque is transferred to torque converter through flex plate. As the flex plate has no functional requirement of storing energy as in case of Manual Transmission (MT) flywheel, flex plate design can be optimized to great extent. Flex plate structure must have compliance to allow the axial deformation of torque convertor due to ballooning pressure generated inside the converter. Flex plate experiences dynamic torque and centrifugal forces due to high rotational speed. It should have compliance to accommodate the assembly misalignments with torque convertor in both axial and radial directions. In this paper, sequential and hybrid optimization techniques are described to optimize the flex plate design with stress, stiffness and mass as design constraints. The load path, corrugation length and axial stiffness of flex plate captured accurately using this hybrid optimization.
Technical Paper

Identification and Resolution of Vehicle Pull and Steering Wobble Using Virtual Simulation and Testing

2018-10-05
2018-01-1895
A vehicle drifts due to several reasons from its intended straight path even in the case of no steering input. Vehicle pull is a condition where the driver must apply a constant correction torque to the steering wheel to maintain a straight-line course of the vehicle. This paper presents an investigation study into the characteristics of a vehicle experiencing steering drift. The aim of the work is to study vehicle stability and the causes of vehicle drift/pull during straight line to minimize vehicle pull level and hence optimize safety measures. A wobble in the steering wheel feels like the steering wheel is shaking to the left and right. This may get worse, if speed increases. This paper focuses on modelling and evaluating effects of suspension parameters, differential friction, brake drag variation, Unbalanced mass in the wheel assembly and C.G. location of the vehicle under multibody dynamic simulation environment.
Technical Paper

Systematic Approach for Structural Optimization of Automotive Systems

2017-10-13
2017-01-5018
In today’s cost-competitive automotive market, use of finite element simulations and optimization tools has become crucial to deliver durable and reliable products. Simulation driven design is the key to reduce number of physical prototypes, design iterations, cost and time to market. However, simulation driven design optimization tools have struggled to find global acceptance and are typically underutilized in many applications; especially in situations where the algorithms have to compete with existing know-how decision making processes. In this study, systematic multi-phase approach for optimization driven design is presented. Approach includes three optimization phases. In first phase, topology optimization is performed on concept BIW design volume to identify critical load paths. Architectural inputs from topology are used to design base CAD.
Technical Paper

Application of Reliability Technique for Developing a Test Methodology to Validate the Engine Mounted Components for Off-Road Applications under Vibration

2017-09-29
2017-01-7004
Vibrational fatigue is a metal fatigue caused by the forced vibrations which are purely random in nature. The phenomenon is predominantly important for the components/systems which are subjected to extreme vibration during its operation. In a vehicle, an engine is the main source of vibration. The vibrational fatigue, therefore, plays a key role in the deterioration of engine mounted components. Multiple test standards and methodologies are available for validating engine mounted parts of an automobile. These might not be appropriate in the case of an off- road vehicle as the vibrational exposure of engine mounted components of an off-road vehicle is entirely different. In the case of an off-road vehicle, the engine mounted components are subjected to a comparatively higher level of vibration for a longer duration of time as compared to the passenger cars.
Technical Paper

Novel, Compact and Light Weight Plenum Assembly for Automobiles

2017-07-10
2017-28-1924
Plenum is the part located between the front windshield and the bonnet of an automobile . It is primarily used as an air inlet to the HVAC during fresh air mode operation. It’s secondary functions include water drainage, aesthetic cover to hide the gap between windshield to bonnet, concealing wiper motors and mechanisms etc. The plenum consists mainly two sub parts viz. upper plenum and lower plenum. Conventional plenum design which is found in majority of global OEMs employ a plastic upper plenum and a metal lower plenum which spans across the entire width of engine compartment. This conventional lower plenum is bulky, consumes more packaging space and has more weight. In this paper, we propose a novel design for the plenum lower to overcome above mentioned limitations of the conventional design. This novel design employs a dry and wet box concept for its working and is made up of complete plastic material.
Technical Paper

Multidisciplinary Design Optimization of Automobile Tail Door

2017-03-28
2017-01-0251
Stringent emission norms by government and higher fuel economy targets have urged automotive companies to look beyond conventional methods of optimization to achieve an optimal design with minimum mass, which also meets the desired level of performance targets at the system as well as at vehicle level. In conventional optimization method, experts from each domain work independently to improve the performance based on their domain knowledge which may not lead to optimum design considering the performance parameters of all domain. It is time consuming and tedious process as it is an iterative method. Also, it fails to highlight the conflicting design solutions. With an increase in computational power, automotive companies are now adopting Multi-Disciplinary Optimization (MDO) approach which is capable of handling heterogeneous domains in parallel. It facilitates to understand the limitations of performances of all domains to achieve good balance between them.
Technical Paper

Detent Profile Optimization to Improve Shift Quality of Manual Transmissions

2015-04-14
2015-01-1135
The customer of today is sensitive towards shift quality. The demand is for a crisp and precise gear shift with low shift effort. The impulses from synchronizers make shifts feel notchy. After synchronization the blocker ring releases the sleeve. The sleeve then hits the teeth of the clutch body ring. The second impulse causes a phenomenon called double bump. This can be felt at the hand and makes a shift feel notchy or sluggish. An ideal way to overcome this is to optimize the detent profile. This paper explains in detail the various factors that contribute to the perceived shift feel. Various methods to optimize the forces on the knob by changing the detent profile are discussed. Gear Shift Quality Assessment (referred as GSQA henceforth) is a tool to acquire the required shift feel data. Using this tool shift efforts and kinematics of a 5 speed manual transmission are plotted for illustration. The calculations required to optimize the detent profile are explained in detail.
Technical Paper

Structural Evaluation Technique Based on RWUP for Scooter Using RLDA

2014-04-01
2014-01-0749
Scooter segment growth is tremendously increasing in India. The increased competition challenges automotive manufacturers to deliver the high quality and high reliable product to the market. Higher reliability involves increased durability testing which involves time and cost. Stress testing a part of durability is initially conducted on prototype vehicles for structural design validation and then later on production units to ensure its structural integrity. The obtained data from the tests can be used for future structural design improvements. Scooters with small tires, suspension limitations transfers more loads to structure, challenges engineers to design robust structure without compromising on weight much. It is necessary to look at Real World Usage Pattern (RWUP) and to create a stress life cycle block for simulation of accelerated testing, thereby optimizing the testing time and the development costs.
Technical Paper

Cost Efficient Tier 4 Final Solution for NRMM Engines up to 37 kW

2013-09-24
2013-01-2466
The increasingly stringent emission legislations provide a continuous challenge for the non-road market. In parallel to transient test cycles, increased emission durability as well as real driving emissions must be fulfilled. The enormous diversification of engines within the different power classes as well as the specific operation requirements regarding various duty cycles, robustness and durability, requires specific solutions to meet these legal limits. The publication shows a cost efficient, reliable and durable approach based on the example of a tractor engine jointly developed by Mahindra & Mahindra Ltd. (M&M) and AVL. It was found that a naturally aspirated (NA) application equipped with common rail and combined with cooled exhaust gas recirculation (EGR) is able to fulfill all legal Environmental Protection Agency (EPA) Tier 4 requirements with a minimum effort on the exhaust aftertreatment side by using only a diesel oxidation catalyst.
X